Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrogen oxygen

The fluids contained within petroleum accumulations are mixtures of organic compounds, which are mostly hydrocarbons (molecules composed of hydrogen and carbon atoms), but may also include sulphur, nitrogen, oxygen and metal compounds. This section will concentrate on the hydrocarbons, but will explain the significance of the other compounds in the processing of the fluids. [Pg.89]

Octet rule (Section 1 3) When forming compounds atoms gain lose or share electrons so that the number of their va lence electrons is the same as that of the nearest noble gas For the elements carbon nitrogen oxygen and the halo gens this number is 8... [Pg.1290]

Temp. Hydrogen sulfide Methane Nitric oxide Nitrogen Oxygen Sulfur dioxide ... [Pg.365]

The complex nature of coal as a molecular entity (2,3,24,25,35,37,53) has resulted ia the chemical explanations of coal combustion being confined to the carbon ia the system. The hydrogen and other elements have received much less attention but the system is extremely complex and the heteroatoms, eg, nitrogen, oxygen, and sulfur, exert an influence on the combustion. It is this latter that influences environmental aspects. [Pg.73]

Fuel Carbon Hydroge Sulfur Nitrogen Oxygen Ash Moistu hhv, m... [Pg.142]

Iodine forms compounds with all the elements except sulfur, selenium, and the noble gases. It reacts only indirectly with carbon, nitrogen, oxygen, and some noble metals such as platinum. [Pg.360]

Laser isotope separation techniques have been demonstrated for many elements, including hydrogen, boron, carbon, nitrogen, oxygen, sHicon, sulfur, chlorine, titanium, selenium, bromine, molybdenum, barium, osmium, mercury, and some of the rare-earth elements. The most significant separation involves uranium, separating uranium-235 [15117-96-1], from uranium-238 [7440-61-1], (see Uranium and uranium compounds). The... [Pg.19]

Most nonmetallic elements (except nitrogen, oxygen, chlorine, and bromine) are oxidized to their highest state as acids. Heated with concentrated acid, sometimes ia the presence of a catalyst, sulfur, phosphoms, arsenic, and iodine form sulfuric, orthophosphoric, orthoarsenic, and iodic acid, respectively. SiHcon and carbon react to produce their dioxides. [Pg.39]

Phosgene reacts with a multitude of nitrogen, oxygen, sulfur, and carbon centers. Reaction with primary alkyl and aryl amines yield carbamoyl chlorides which are readily dehydrohalogenated to isocyanates. Secondary amines also form carbamoyl chlorides. [Pg.312]

The alkylation desctibed in this article is the substitution of a hydrogen atom bonded to the carbon atom of a paraffin or aromatic ring by an alkyl group. The alkylations of nitrogen, oxygen, and sulfur are described in separate articles (see Amines Ethers). [Pg.45]

This addition is general, extending to nitrogen, oxygen, carbon, and sulfur nucleophiles. This reactivity of the quinone methide (23) is appHed in the synthesis of a variety of stabili2ers for plastics. The presence of two tert-huty groups ortho to the hydroxyl group, is the stmctural feature responsible for the antioxidant activity that these molecules exhibit (see Antioxidants). [Pg.61]

Titanium triiodide can be made by direct combination of the elements or by reducing the tetraiodide with aluminum at 280°C in a sealed tube. Til reacts with nitrogen, oxygen, and sulfur donor ligands to give the corresponding adducts (148). [Pg.132]

PERMANENT GASES Table 3 lists the permeabilities of oxygen [7782-44-7] nitrogen [7727-37-9] and carbon dioxide [124-38-9] for selected barrier and nonbarrier polymers at 20°C and 75% rh. The effect of temperature and humidity are discussed later. For many polymers the permeabihties of nitrogen, oxygen, and carbon dioxide are in the ratio 1 4 14. [Pg.488]

The methods of choice for beryUium oxide in beryUium metal are inert gas fusion and fast neutron activation. In the inert gas fusion technique, the sample is fused with nickel metal in a graphite cmcible under a stream of helium or argon. BeryUium oxide is reduced, and the evolved carbon monoxide is measured by infrared absorption spectrometry. BeryUium nitride decomposes under the same fusion conditions and may be determined by measurement of the evolved nitrogen. Oxygen may also be determined by activation with 14 MeV neutrons (20). The only significant interferents in the neutron activation technique are fluorine and boron, which are seldom encountered in beryUium metal samples. [Pg.69]

Flame Temperature. The adiabatic flame temperature, or theoretical flame temperature, is the maximum temperature attained by the products when the reaction goes to completion and the heat fiberated during the reaction is used to raise the temperature of the products. Flame temperatures, as a function of the equivalence ratio, are usually calculated from thermodynamic data when a fuel is burned adiabaticaHy with air. To calculate the adiabatic flame temperature (AFT) without dissociation, for lean to stoichiometric mixtures, complete combustion is assumed. This implies that the products of combustion contain only carbon dioxide, water, nitrogen, oxygen, and sulfur dioxide. [Pg.517]


See other pages where Nitrogen oxygen is mentioned: [Pg.76]    [Pg.630]    [Pg.14]    [Pg.53]    [Pg.498]    [Pg.1144]    [Pg.130]    [Pg.26]    [Pg.56]    [Pg.92]    [Pg.87]    [Pg.304]    [Pg.3]    [Pg.123]    [Pg.369]    [Pg.4]    [Pg.418]    [Pg.237]    [Pg.252]    [Pg.331]    [Pg.477]    [Pg.440]    [Pg.206]    [Pg.45]    [Pg.443]    [Pg.188]    [Pg.468]    [Pg.363]    [Pg.280]    [Pg.495]    [Pg.4]    [Pg.224]    [Pg.212]    [Pg.327]   
See also in sourсe #XX -- [ Pg.11 ]

See also in sourсe #XX -- [ Pg.48 ]




SEARCH



© 2024 chempedia.info