Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrogen diazo compound reaction

The problem of the synthesis of highly substituted olefins from ketones according to this principle was solved by D.H.R. Barton. The ketones are first connected to azines by hydrazine and secondly treated with hydrogen sulfide to yield 1,3,4-thiadiazolidines. In this heterocycle the substituents of the prospective olefin are too far from each other to produce problems. Mild oxidation of the hydrazine nitrogens produces d -l,3,4-thiadiazolines. The decisive step of carbon-carbon bond formation is achieved in a thermal reaction a nitrogen molecule is cleaved off and the biradical formed recombines immediately since its two reactive centers are hold together by the sulfur atom. The thiirane (episulfide) can be finally desulfurized by phosphines or phosphites, and the desired olefin is formed. With very large substituents the 1,3,4-thiadiazolidines do not form with hydrazine. In such cases, however, direct thiadiazoline formation from thiones and diazo compounds is often possible, or a thermal reaction between alkylideneazinophosphoranes and thiones may be successful (D.H.R. Barton, 1972, 1974, 1975). [Pg.35]

Nitrite can be deterrnined by reaction with sulfanilamide to form the diazo compound, which couples with /V-(1-naphthyl)ethylenediamine dihydrochloride to form an intensely colored red azo dye. Nitrate can be deterrnined in a similar manner after reduction to nitrite. Suitable reducing agents are cadmium filings or hydrazine. This method is useful at a nitrogen concentration of 10 -lO " M. [Pg.231]

Oxidative Couplings of Heterocyclic Hydrazones. This method has opened the way to the preparation of azo derivatives of diazo compounds unobtainable by other means, ie, heterocycHc compounds ia which the diazotizable amino group is conjugated with the heterocycHc nitrogen atom as ia 2- and 4-amiQopyridine, compounds which do not normally yield stable diazonium salts (38). The reaction occurs as illustrated by equation 7 for the iateraction of (A/-methylcarbostyryl)hydrazone [28219-37-6] and dimethyl aniline the overall process is oxidation. [Pg.430]

It was not their reactivity but their chemical inertness that was the true surprise when diazirines were discovered in 1960. Thus they are in marked contrast to the known linear diazo compounds which are characterized by the multiplicity of their reactions. For example, cycloadditions were never observed with the diazirines. Especially surprising is the inertness of diazirines towards electrophiles. Strong oxidants used in their synthesis like dichromate, bromine, chlorine or hypochlorite are without action on diazirines. Diazirine formation may even proceed by oxidative dealkylation of a diaziridine nitrogen in (186) without destruction of the diazirine ring (75ZOR2221). The diazirine ring is inert towards ozone simple diazirines are decomposed only by more than 80% sulfuric acid (B-67MI50800). [Pg.220]

Photolysis of dlazirines to nitrogen and carbenes is a general reaction and plays a greater role in carbene chemistry than photolysis of linear diazo compounds. Whereas the latter are often obtained only under the conditions of their thermal decomposition from suitable precursors, diazirines are obtainable in a pure state in most cases. Photolysis has the further advantage to permit nitrogen extrusion at atmospheric pressure, even with low-boiling materials. [Pg.225]

Polyfluoroalkyl- andperfluoroalkyl-substituted CO and CN multiple bonds as dipolarophiles. Dmzo alkanes are well known to react with carbonyl compounds, usually under very mild conditions, to give oxiranes and ketones The reaction has been interpreted as a nucleophilic attack of the diazo alkane on the carbonyl group to yield diazonium betaines or 1,2,3 oxadiazol 2 ines as reaction intermediates, which generally are too unstable to be isolated Aromatic diazo compounds react readily with partially fluorinated and perfluorinated ketones to give l,3,4-oxadiazol-3-ines m high yield At 25 °C and above, the aryloxa-diazolines lose nitrogen to give epoxides [111]... [Pg.860]

In a protic solvent—glycols are often used, with the base being the corresponding sodium glycolate—the reaction proceeds via formation of a carbenium ion 5. The diazo compound 3 can be converted into the diazonium ion 4 through transfer of a proton from the solvent (S-H). Subsequent loss of nitrogen then leads to the carbenium ion 5 ... [Pg.23]

When an aprotic solvent is used, the reaction proceeds via an intermediate carbene 6. In the absence of a proton donor, a diazonium ion cannot be formed and the diazo compound 3 loses nitrogen to give the carbene 6 ... [Pg.23]

This diazotization is typical of many aminoazoles the diazonium ions formed are relatively strong acids. The pATa values of five di-, tri-, and tetrazolediazonium ions are reported to be between 3 and 4, i. e., about 10 units lower (more acidic) than those of the respective unsubstituted heterocycles (Vilarrasa et al., 1974). Therefore, deprotonation of the diazonium ion is easy and, depending on reaction conditions, yields either the diazonium salt or its conjugate base, the diazo compound. The electrophilic reactivity of the P nitrogen atom in the diazo group of the base is lower than the reactivity of the diazonio group of the cation (Diener and Zollinger, 1986 see Sec. 12.2). [Pg.16]

Fig. 7-2. Potential energy E as a function of the reaction coordinate for reactions of the P-nitrogen of arenediazonium ions with nucleophiles yielding (Z)- and (is)-azo compounds, a) Reactant-like transition states (e. g., reaction with OH) b) product-like transition states (e. g., diazo coupling reaction with phenoxide ions product = cyclohexadienone-type o-complex (see Sec. 12.8). Fig. 7-2. Potential energy E as a function of the reaction coordinate for reactions of the P-nitrogen of arenediazonium ions with nucleophiles yielding (Z)- and (is)-azo compounds, a) Reactant-like transition states (e. g., reaction with OH) b) product-like transition states (e. g., diazo coupling reaction with phenoxide ions product = cyclohexadienone-type o-complex (see Sec. 12.8).
An example of a serendipitous discovery in a field related to diazo chemistry is the first in vitro product of a reaction of molecular nitrogen with a transition metal complex (Allen and Senoff, 1965). As discussed in the context of diazo-metal complexes (Zollinger, 1995, Sec. 3.3), the metal —N2 bonds are similar to C —N2 bonds in organic diazo compounds. The paradigm that N2 is (almost) inert in chemical reactions probably explains why it took so long for N2 complexes to be discovered. ... [Pg.218]

Two methods for converting carboxylic acids to esters fall into the mechanistic group under discussion the reaction of carboxylic acids with diazo compounds, especially diazomethane and alkylation of carboxylate anions by halides or sulfonates. The esterification of carboxylic acids with diazomethane is a very fast and clean reaction.41 The alkylating agent is the extremely reactive methyldiazonium ion, which is generated by proton transfer from the carboxylic acid to diazomethane. The collapse of the resulting ion pair with loss of nitrogen is extremely rapid. [Pg.227]

Reaction of diazo compounds with a variety of transition metal compounds leads to evolution of nitrogen and formation of products of the same general type as those formed by thermal and photochemical decomposition of diazoalkanes. These transition... [Pg.912]

The photoelimination of nitrogen from diazo compounds provides a simple and versatile route for the generation of carbenes, and in certain instances, insertion reactions of carbenes can be employed in the synthesis of heterocycles. Carbenes are believed to be involved at least in part in the photochemically induced conversion of N,N-diethyldiazoacetamide (439) into the y-lactam 440 and the /Mactam 441,365 and a similar approach has been successfully employed in the synthesis of a carbapen-2-em366 and of 7-methylcephalosporin analogues.367 Carbene insertion of a different type has been observed on irradiation of the 6-anilino-5-diazouracils 442 to give the indolo[2,3-d]pyrimidines 443.368 Ring contractions in heterocycles... [Pg.311]

This chapter has to do with reactions wherein the photochemical event is the breaking of a bond in a molecule. For a single bond this results in the formation of a pair of radicals or a diradical. For a double bond as in diazo compounds or in azides a carbene or a nitrene and nitrogen are formed. All these intermediates will then undergo further mono- or bi-molecular dark reactions or eventually recombine to ground state starting materials. [Pg.20]

Mechanistic details of this reaction are scarce, but Aratani (14) mentions that the catalyst needs to be activated by heating in the presence of the diazo compound at 75-80°C until nitrogen evolution is observed and the color of the complex changes from green to brown. Reduction of the cupric precatalyst with a substituted hydrazine results in a yellow cuprous complex capable of inducing an instantaneous decomposition of diazoacetate at ambient temperature. Aratani proposes that the active catalyst is tetrahedral Cu(I), 26 in Scheme 2. Reaction with the diazoester from the less hindered face forms the Cu carbenoid having one hemilabile ligand (al-... [Pg.11]

Like those of all the simple aliphatic diazo-compounds the manifold reactions of ethyl diazoacetate are determined by the lability of the nitrogen. The elimination of the latter is catalytically accelerated by aqueous acids, and, indeed, the velocity of decomposition is directly proportional to the hydrogen ion concentration, so that a means is provided by which this concentration can be measured for acids of... [Pg.279]


See other pages where Nitrogen diazo compound reaction is mentioned: [Pg.130]    [Pg.2]    [Pg.65]    [Pg.104]    [Pg.201]    [Pg.283]    [Pg.339]    [Pg.275]    [Pg.1374]    [Pg.275]    [Pg.209]    [Pg.925]    [Pg.25]    [Pg.136]    [Pg.294]    [Pg.86]    [Pg.79]    [Pg.234]    [Pg.129]    [Pg.28]    [Pg.3]    [Pg.189]    [Pg.182]    [Pg.186]    [Pg.173]    [Pg.194]    [Pg.631]    [Pg.657]    [Pg.79]    [Pg.93]    [Pg.116]    [Pg.143]    [Pg.151]   
See also in sourсe #XX -- [ Pg.258 ]




SEARCH



Diazo compounds

Diazo reaction

Nitrogen diazo compounds

Reaction diazo compounds

© 2024 chempedia.info