Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diazo-metal complexes

An example of a serendipitous discovery in a field related to diazo chemistry is the first in vitro product of a reaction of molecular nitrogen with a transition metal complex (Allen and Senoff, 1965). As discussed in the context of diazo-metal complexes (Zollinger, 1995, Sec. 3.3), the metal —N2 bonds are similar to C —N2 bonds in organic diazo compounds. The paradigm that N2 is (almost) inert in chemical reactions probably explains why it took so long for N2 complexes to be discovered. ... [Pg.218]

The major problem of these diazotizations is oxidation of the initial aminophenols by nitrous acid to the corresponding quinones. Easily oxidized amines, in particular aminonaphthols, are therefore commonly diazotized in a weakly acidic medium (pH 3, so-called neutral diazotization) or in the presence of zinc or copper salts. This process, which is due to Sandmeyer, is important in the manufacture of diazo components for metal complex dyes, in particular those derived from l-amino-2-naphthol-4-sulfonic acid. Kozlov and Volodarskii (1969) measured the rates of diazotization of l-amino-2-naphthol-4-sulfonic acid in the presence of one equivalent of 13 different sulfates, chlorides, and nitrates of di- and trivalent metal ions (Cu2+, Sn2+, Zn2+, Mg2+, Fe2 +, Fe3+, Al3+, etc.). The rates are first-order with respect to the added salts. The highest rate is that in the presence of Cu2+. The anions also have a catalytic effect (CuCl2 > Cu(N03)2 > CuS04). The mechanistic basis of this metal ion catalysis is not yet clear. [Pg.27]

With regard to the mechanism of these Pd°-catalyzed reactions, little is known in addition to what is shown in Scheme 10-62. In our opinion, the much higher yields with diazonium tetrafluoroborates compared with the chlorides and bromides, and the low yields and diazo tar formation in the one-pot method using arylamines and tert-butyl nitrites (Kikukawa et al., 1981 a) indicate a heterolytic mechanism for reactions under optimal conditions. The arylpalladium compound is probably a tetra-fluoroborate salt of the cation Ar-Pd+, which dissociates into Ar+ +Pd° before or after addition to the alkene. An aryldiazenido complex of Pd(PPh3)3 (10.25) was obtained together with its dediazoniation product, the corresponding arylpalladium complex 10.26, in the reaction of Scheme 10-64 by Yamashita et al. (1980). Aryldiazenido complexes with compounds of transition metals other than Pd are discussed in the context of metal complexes with diazo compounds (Zollinger, 1995, Sec. 10.1). [Pg.253]

Metal-Catalyzed. Cyclopropanation. Carbene addition reactions can be catalyzed by several transition metal complexes. Most of the synthetic work has been done using copper or rhodium complexes and we focus on these. The copper-catalyzed decomposition of diazo compounds is a useful reaction for formation of substituted cyclopropanes.188 The reaction has been carried out with several copper salts,189 and both Cu(I) and Cu(II) triflate are useful.190 Several Cu(II)salen complexes, such as the (V-f-butyl derivative, which is called Cu(TBS)2, have become popular catalysts.191... [Pg.921]

Despite the volume of work concerned with metal-catalyzed decomposition of diazo compounds and carbenoid reactions 28>, relatively little work has been reported on the metal-catalyzed decomposition of sulphonyl azides. Some metal-aryl nitrene complexes have recently been isolated 29 31>. Nitro compounds have also been reduced to nitrene metal complexes with transition metal oxalates 32K... [Pg.14]

Not included in the present review is the fascinating new chemistry which results from reaction between diazo compounds and low-valent transition-metal complexes bearing easily displaceable two-electron ligands as well as with metal-metal multiple bonds and metal hydrides whereby a variety of novel organometallic molecules could be obtained. This field has been covered, in accord with its rapid development, by successive reviews of Hermann 19 22) and Atbini23). [Pg.79]

It has been widely accepted that the carbene-transfer reaction using a diazo compound and a transition metal complex proceeds via the corresponding metal carbenoid species. Nishiyama et al. characterized spectroscopically the structure of the carbenoid intermediate that underwent the desired cyclopropanation with high enantio- and diastereoselectivity, derived from (91).254,255 They also isolated a stable dicarbonylcarbene complex and demonstrated by X-ray analysis that the carbene moiety of the complex was almost parallel in the Cl—Ru—Cl plane and perpendicular to the pybox plane (vide infra).255 These results suggest that the rate-determining step of metal-catalyzed cyclopropanation is not carbenoid formation, but the carbene-transfer reaction.254... [Pg.249]

For example, the substituted aniline Ar-NH2 (Ar = />-CH3OC6H4) reacts with the ruthenium nitrosyl complex Ru(bpy)2(Cl)(NO)2+ (bpy = 2,2 -bipyridine) to give a complex of the diazo ligand, namely Ru(bpy)2(Cl)(NNAr)2+ (57). Upon employing the 15N labeled nitrosyl complex Ru(bpy)2Cl(15NO)2+ this reaction resulted in the 15N coordinated product, Ru(bpy)2Cl(15NNAr)2+, demonstrating that the reaction occurs within the metal complex coordination sphere. When the reactions were conducted in non-protic solvents, these nucleophile-nitrosyl adducts could be isolated. [Pg.225]

Certain transition metal complexes catalyze the decomposition of diazo compounds. The metal-bonded carbene intermediates behave differently from the free species generated via photolysis or thermolysis of the corresponding carbene precursor. The first catalytic asymmetric cyclopropanation reaction was reported in 1966 when Nozaki et al.93 showed that the cyclopropane compound trans- 182 was obtained as the major product from the cyclopropanation of styrene with diazoacetate with an ee value of 6% (Scheme 5-56). This reaction was effected by a copper(II) complex 181 that bears a salicyladimine ligand. [Pg.314]

As mentioned earlier, it was originally assumed that this reaction is mechanistically related to the copper-catalyzed diazo-transfer cyclopropanation. As such, the intervention of a metal complexed nitrenoid intermediate has been theorized as the principal mode of action. Mechanistic investigations in this reaction have paralleled the development of the asymmetric version and hence, will be discussed in concert. [Pg.38]

In contrast to direct dyes, metal-complex azo reactive dyes are almost always monoazo chromogens coordinated to one copper(II) ion per molecule. The important structural types include phenylazo J acid reds (5.47), phenylazo H acid violets (5.48) and naphthylazo H acid blues (5.49), where Z represents the reactive system attached through the imino group in the coupling component. Less often the reactive system is located on the diazo component, as in Cl Reactive Violet 5 (5.50) and analogous red to blue members of various ranges. [Pg.254]

During the oxidative copperizing process, an o-hydroxyazo compound reacts with a copper(II) salt in the presence of hydrogen peroxide. Both methods broaden the scope of metal complexation reactions by extending the selection of suitable diazo components [8,9]. [Pg.391]

The major problem of these diazotizations is oxidation of the initial aminophenols by nitrous acid to the corresponding quinones. Easily oxidized amines, in particular aminonaphthols, are therefore commonly diazotized in a weakly acidic medium (pH 3) so-called neutral diazotization or in the presence of zinc or copper salts. This process, which is due to Sandmeyer, is important in the manufacture of diazo components for metal complex dyes, in particular those derived from l-amino-2-naphthol-4-sulfonic acid. [Pg.637]

A variety of transition metal-carbene complexes have been prepared and characterized. None of these are known to efficiently effect intermolecular C-H insertion. An electrophilic iron carbcne complex can, however, participate in intramolecular C-H insertions (Section I.2.2.3.2.I.). More commonly, transition metal complexes are used to catalyze intramolecular C-H insertion starting with a diazo precursor. In these cases, the intermediate metal carbene complexes are not isolated. [Pg.1136]

Similar to those of oxygen and sulfur ylide, ammonium ylide or azomethine ylide can be generated by the interaction of metal carbene and amine or imine, respectively. As is the case of sulfur, nitrogen also has a strong coordinating ability to a metal complex. Consequently, metal complex-catalyzed diazo decomposition in the presence of an amine or imine usually requires high reaction temperatures (Figure 6). [Pg.168]

Certain transition metal complexes catalyze the decomposition of diazo compounds, where the metal-bound carbene intermediates behave differently from the free species generated by their photolysis or thermolysis. [Pg.303]

Diazocarbonyl compounds, especially diazo ketones and diazo esters [19], are the most suitable substrates for metal carbene transformations catalyzed by Cu or Rh compounds. Diazoalkanes are less useful owing to more pronounced carbene dimer formation that competes with, for example, cyclopropanation [7]. This competing reaction occurs by electrophilic addition of the metal-stabilized carbocation to the diazo compound followed by dinitrogen loss and formation of the alkene product that occurs with regeneration of the catalytically active metal complex (Eq. 5.5) [201. [Pg.194]

Metallization. Bident ate formazans that are insoluble in water can be warmed with cobalt, nickel, and copper salts (preferably acetates) to form metal chelates in solvents such as methanol, ethanol, acetone, and dimethylformamide. Metal complexes of tri- and tetradentate formazans are much more stable. Metallization with divalent salts occurs rapidly at room temperature. On reaction with diazo-tized 2-aminophenols or 2-aminonaphthols, coupling and metallization with divalent metal salts can take place concurrently under the same conditions. When coupling is complete, the dye is usually fully metallized. [Pg.101]

Bis-cationic metal-complex dyes are suitable for dyeing leather. Cationic monoazo dyes in which a trialkylammonium group is linked via a carboxamide group to the diazo component [116] and disazo dyes are known. The latter are prepared from dialkylamino compounds by quatemization with alkylene dibromides. They are suitable for dyeing paper [117],... [Pg.241]

The extent of variation is extremely large as a result of the great number of available diazo and coupling components, the choice of complex-forming metal (primarily chromium or cobalt), and the possibility of synthesizing 1 2 mixed-metal complexes. [Pg.288]

First, 1 2 metal complexes of (mainly mono-) azo dyes, without sulfonic or carboxylic acid groups, and trivalent metals (see Section 3.11). The metals are preferably chromium and cobalt nickel, manganese, iron, or aluminum are of lesser importance. Diazo components are mainly chloro- and nitroaminophenols or amino-phenol sulfonamides coupling components are (3-naphthol, resorcinol, and 1-phe-nyl-3-methyl-5-pyrazolone. Formation of a complex from an azo dye and a metal salt generally takes place in the presence of organic solvents, such as alcohols, pyridine, or formamide. An example is C.I. Solvent Red 8, 12715 [33270-70-1] (1). [Pg.296]

By far the most important and widely used metal-complex dyes are derived from azo compounds. Although they deliver a multitude of shades, only a few basic components are necessary to produce metal-complex azo dyes. The most useful starting materials are the amines 1-4, which serve as diazo components for reaction with suitable coupling components to give tridentate azo ligands. In addition, the amines 1 and 2 can be condensed with salicylaldehyde or arylazo-substituted salicylaldehydes to give tridentate azomethine ligands. [Pg.302]

Optically active metal complexes have been recognized as excellent catalysts for the enantioselective cyclopropanation of carbenes with alkenes. Normally, diazo compounds react under metal catalysts in the dark to afford carbenoid complexes as key intermediates. Katsuki et al. have reported the ds-selective and enantioselective cyclopropanation of styrene with a-diazoacetate in the presence of optically active (R,R)-(NO + )(salen)ruthenium complex 80, supported under illumination (440 nm light or an incandescent bulb) [59]. The irradiation causes dissociation of the apical ligand ON + in 80, and thus avoids the splitting of nitrogen from the a-diazoacetate. [Pg.112]

Addition of diazo compounds to metallic complexes allows the formation of metal carbenoid species which can react with unsaturated molecules to form C-C or C=C bonds. [Pg.33]


See other pages where Diazo-metal complexes is mentioned: [Pg.121]    [Pg.459]    [Pg.460]    [Pg.121]    [Pg.113]    [Pg.46]    [Pg.156]    [Pg.79]    [Pg.91]    [Pg.238]    [Pg.6]    [Pg.14]    [Pg.1]    [Pg.6]    [Pg.24]    [Pg.404]    [Pg.208]    [Pg.261]    [Pg.33]    [Pg.230]    [Pg.250]    [Pg.127]   
See also in sourсe #XX -- [ Pg.125 ]




SEARCH



Diazo compounds metal complexes

Inorganic Diazo Compounds and Metal Complexes with Dinitrogen as Ligand

Metal Complexes of Diazonium and Diazo Compounds

Transition metal complexes with diazo compounds

© 2024 chempedia.info