Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitro-compounds, organic oxidation

Most of the processes relate to the reduction of organic compounds, particularly the reduction of nitro-compounds, but oxidation methods have been utilised successfully, and in many cases substitution products and dye-stuffs have been prepared by electrolytic means. [Pg.53]

Given a nitrogen containing organic compound such as an amide a nitnle or a nitro compound how is the correct oxidation state of the desired amine to be achieved" ... [Pg.926]

The bath components for a nitrite—nitrate accelerated bath basic to this conversion coating process are (/) 2inc metal or 2inc oxide dissolved in acid (2) phosphate ions added as phosphoric acid (J) addition of an oxidant such as sodium nitrite and (4) addition of nitric acid. Other oxidants such as peroxide, chlorate, chlorate in combination with nitrate, or an organic nitro compound may also be used. [Pg.223]

In general, peroxomonosulfates have fewer uses in organic chemistry than peroxodisulfates. However, the triple salt is used for oxidizing ketones (qv) to dioxiranes (7) (71,72), which in turn are useful oxidants in organic chemistry. Acetone in water is oxidized by triple salt to dimethyldioxirane, which in turn oxidizes alkenes to epoxides, polycycHc aromatic hydrocarbons to oxides and diones, amines to nitro compounds, sulfides to sulfoxides, phosphines to phosphine oxides, and alkanes to alcohols or carbonyl compounds. [Pg.95]

Obsolete uses of urea peroxohydrate, as a convenient source of aqueous hydrogen peroxide, include the chemical deburring of metals, as a topical disinfectant and mouth wash, and as a hairdresser s bleach. In the 1990s the compound has been studied as a laboratory oxidant in organic chemistry (99,100). It effects epoxidation, the Baeyer-Villiger reaction, oxidation of aromatic amines to nitro compounds, and the conversion of sodium and nitrogen compounds to S—O and N—O compounds. [Pg.97]

Because thiols are easily oxidized, a host of organic and inorganic oxidants may be used. Mild oxidants such as oximes, nitro compounds, or air can be effective. Various oxidants have been used in special appHcations, but only a few are used in large-scale appHcations. [Pg.456]

Aromatic nitro and nitroso compounds are easily reduced at carbon and mercury electrodes. Other nitro compounds such as nitrate esters, nitramines, and nitrosamines are also typically easily reduced. The complete reduction of a nitro compound consists of three two-electron steps (nitro-nitroso-hydroxylamine-amine). Since most organic oxidations are only two-electron processes, higher sensitivity is typically found for nitro compounds. Several LCEC based determination of nitro compounds have been reported... [Pg.26]

Nitro compounds are versatile precursors for diverse functionalities. Their conversion into carbonyl compounds by the Nef reaction and into amines by reduction are the most widely used processes in organic synthesis using nitro compounds. In addition, dehydration of primary nitro compounds leads to nitrile oxides, a class of reactive 1,3-dipolar reagents. Nitro compounds are also good precursors for various nitrogen derivatives such as nitriles, oximes, hydroxylamines, and imines. These transformations of nitro compounds are well established and are used routinely in organic synthesis. [Pg.159]

The conversion of primary or secondary nitro compounds into aldehydes or ketones is normally accomplished by use of the Nef reaction, which is one of the most important transformations of nitro compounds. Various methods have been introduced forthis transformation (1) treatment of nitronates with acid, (2) oxidation of nitronates, and (3) reduction of nitroalkenes. Although a comprehensive review is available,3 important procedures and improved methods published after this review are presented in this chapter. The Nef reaction after the nitro-aldol (Henry reaction), Michael addition, or Diels-Alder reaction using nitroalkanes or nitroalkenes has been used extensively in organic synthesis of various substrates, including complicated natural products. Some of them are presented in this chapter other examples are presented in the chapters discussing the Henry reaction (Chapter 3), Michael addition (Chapter 4), and Diels-Alder reaction (Chapter 8). [Pg.159]

Primary nitro compounds are good precursors for preparing nitriles and nitrile oxides (Eq. 6.31). The conversion of nitro compounds into nitrile oxides affords an important tool for the synthesis of complex natural products. Nitrile oxides are reactive 1,3-dipoles that form isoxazolines or isoxazoles by the reaction with alkenes or alky nes, respectively. The products are also important precursors for various substrates such as P-amino alcohols, P-hydroxy ketones, P-hydroxy nitriles, and P-hydroxy acids (Scheme 6.3). Many good reviews concerning nitrile oxides in organic synthesis exist some of them are listed here.50-56 Applications of organic synthesis using nitrile oxides are discussed in Section 8.2.2. [Pg.167]

Titanous chloride (titanium trichloride) is applied in aqueous solutions, sometimes in the presence of solvents increasing the miscibility of organic compounds with the aqueous phase [199, 200]. Its applications are reduction of nitro compounds [201] and cleavage of nitrogen-nitrogen bonds [202] but it is also an excellent reagent for deoxygenation of sulfoxides [203] and amine oxides [199] (Procedure 38, p. 214). [Pg.30]

Laboratory studies have indicated an increasing number of further processes for which iron oxides may be used as catalysts. A sodium promoted iron oxide on a support of Si02 catalyses the gas phase oxidation (377-427 °C) by nitrous oxide, of pro-pene to propene oxide (Duma and Honicke, 2000). Ferrihydrite or akaganeite can be used to catalyse the reduction (at 55-75 °C) by hydrazine, of aromatic nitro compounds to aromatic amines (which are the starting materials for a huge range of chemicals) these Fe oxides have the potential to provide a safe and economical pathway to the production of these important organics (Lauwiner et al., 1998). [Pg.520]

Potassium nitrate is obtainable from natural deposits in hot countries e.g. Ceylon, Egypt, Mexico, India, Iran and some areas of the U.S.S.R. It occurs there as the result of the microbiological oxidation of organic nitro compounds and of the reaction of the products with the alkaline components of the soil. On being refined by crystallization such saltpetre was (and partly still is) used for the manufacture of blackpowder. In Great Britain for instance until relatively recently the only source of potassium nitrate was saltpetre from India. [Pg.342]

Aliphatic nitro compounds are versatile building blocks and intermediates in organic synthesis,14 15 cf. the overview given in the Organic Syntheses preparation of nitroacetaldehyde diethyl acetal.16 For example, Henry and Michael additions, respectively, lead to 1,2- and 1,4-difunctionalized derivatives.14 18 1,3-Difunctional compounds, such as amino alcohols or aldols are accessible from primary nitroalkanes by dehydration/1,3-dipolar nitrile oxide cycloaddition with olefins (Mukaiyama reaction),19 followed by ring cleavage of intermediate isoxazolines by reduction or reduction/hydrolysis.20 21... [Pg.243]


See other pages where Nitro-compounds, organic oxidation is mentioned: [Pg.119]    [Pg.97]    [Pg.337]    [Pg.469]    [Pg.180]    [Pg.677]    [Pg.159]    [Pg.167]    [Pg.167]    [Pg.169]    [Pg.38]    [Pg.532]    [Pg.70]    [Pg.232]    [Pg.143]    [Pg.532]    [Pg.664]    [Pg.235]    [Pg.167]    [Pg.169]    [Pg.495]    [Pg.80]    [Pg.182]    [Pg.213]    [Pg.221]    [Pg.840]    [Pg.843]    [Pg.146]    [Pg.247]    [Pg.743]    [Pg.130]    [Pg.84]    [Pg.159]    [Pg.82]   
See also in sourсe #XX -- [ Pg.38 , Pg.388 ]




SEARCH



Nitro 4-oxid

Nitro compounds oxidation

Organic compounds, oxidation

Organic oxidant

Organic oxidation

© 2024 chempedia.info