Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation nitro compounds

The type and quality of the pigment are determined not only by the nature and concentration of the additives, but also by the reaction rate. The rate depends on the grades of iron used, their particle size, the rates of addition of the iron and nitrobenzene (or another nitro compound), and the pH value. No bases are required to precipitate the iron compounds. Only ca. 3 % of the theoretical amount of acid is required to dissolve all of the iron. The aromatic nitro compound oxidizes the Fe2 + to Fe3 + ions, acid is liberated during hydrolysis and pigment formation, and more metallic iron is dissolved by the liberated acid to form iron(II) salts consequently, no additional acid is necessary. [Pg.89]

Nucleophilic introduction of nitro functions seems to be confined to reactions of diazonium salts which offer a useful entry, particularly to 2-nitroimidazoles (from the diazonium fluoroborates see Section 3.02.7.1.6). This method, though, depends on the ease of synthesis, isolation, and stability of aminoimidazoles. The 4- and 5-amino isomers in particular are frequently unstable in air, and aminoimidazoles are usually made either by ring synthetic methods or by reduction of nitro compounds. Oxidation of amino groups to nitro is seldom a useful option. [Pg.219]

Most nitro compounds oxidize ferrous hydroxide to ferric hydroxide, which is a red-brown solid. A precipitate indicates a positive test. [Pg.471]

Azo-compounds can be obtained by reduction of nitro-compounds, or by oxidation of hydrazo-compounds. They are usually prepared, however, by reacting a phenol or amine with a diazonium salt. The coupling usually takes place in the position para to the hydroxyl or amino group, but if this position is occupied it goes to the ortho position, e.g. [Pg.49]

Dissolve 0-5 g. of the substance in 10 ml. of 50 per cent, alcohol, add 0-5 g. of solid ammonium chloride and about 0 -5 g. of zinc powder. Heat the mixture to boiling, and allow the ensuing chemical reaction to proceed for 5 minutes. Filter from the excess of zinc powder, and teat the filtrate with Tollen s reagent Section 111,70, (i). An immediate black or grey precipitate or a silver mirror indicates the presence of a hydroxyl-amine formed by reduction of the nitro compound. Alternatively, the filtrate may be warmed with Fehling s solution, when cuprous oxide will be precipitated if a hydroxylamine is present. Make certain that the original compound does not aflfect the reagent used. [Pg.529]

Oxidation of side chains. Aromatic nitro compounds that contain a side chain (e.g., nitro derivatives of alkyl benzenes) may be oxidised to the corresponding acids either by alkahne potassium permanganate (Section IV,9, 6) or, preferably, with a sodium dichromate - sulphuric acid mixture in which medium the nitro compound is more soluble. [Pg.529]

Comparison of the behaviour of cinnoline 2-oxide (vi, i = O) with that of 2-methoxycinnolinium (vi, R = OMe) suggests that at high acidities the former is nitrated as its conjugate acid (vi, R = OH), but that as the acidity is lowered the free base becomes active. At high acidities 5- and 8-nitration are dominant, but as the acidity is lowered 6-nitration becomes increasingly important. The 5- and 8-nitro compounds are probably formed mainly or wholly by nitration of the conjugate acid, and the 6-nitro compound wholly or mainly from the free base. ... [Pg.217]

The overall reactivity of the 4- and 5-positions compared to benzene has been determined by competitive methods, and the results agreed with kinetic constants established by nitration of the same thiazoles in sulfuric acid at very low concentrations (242). In fact, nitration of alkylthiazoles in a mixture of nitric and sulfuric acid at 100°C for 4 hr gives nitro compounds in preparative yield, though some alkylthiazoles are oxidized. Results of competitive nitrations are summarized in Table III-43 (241, 243). For 2-alkylthiazoles, reactivities were too low to be measured accurately. [Pg.381]

Given a nitrogen containing organic compound such as an amide a nitnle or a nitro compound how is the correct oxidation state of the desired amine to be achieved" ... [Pg.926]

NO formation occurs by a complex reaction network of over 100 free-radical reactions, and is highly dependent on the form of nitrogen in the waste. Nitro-compounds form NO2 first, and then NO, approaching equiHbrium from the oxidized side. Amines form cyano intermediates on their way to NO, approaching equiHbrium from the reduced side. Using air as the oxidant, NO also forms from N2 and O2. This last is known as thermal NO. ... [Pg.58]

The bath components for a nitrite—nitrate accelerated bath basic to this conversion coating process are (/) 2inc metal or 2inc oxide dissolved in acid (2) phosphate ions added as phosphoric acid (J) addition of an oxidant such as sodium nitrite and (4) addition of nitric acid. Other oxidants such as peroxide, chlorate, chlorate in combination with nitrate, or an organic nitro compound may also be used. [Pg.223]

Ttinitroparaffins can be prepared from 1,1-dinitroparaffins by electrolytic nitration, ie, electrolysis in aqueous caustic sodium nitrate solution (57). Secondary nitroparaffins dimerize on electrolytic oxidation (58) for example, 2-nitropropane yields 2,3-dimethyl-2,3-dinitrobutane, as well as some 2,2-dinitropropane. Addition of sodium nitrate to the anolyte favors formation of the former. The oxidation of salts of i7k-2-nitropropane with either cationic or anionic oxidants generally gives both 2,2-dinitropropane and acetone (59) with ammonium peroxysulfate, for example, these products are formed in 53 and 14% yields, respectively. Ozone oxidation of nitroso groups gives nitro compounds 2-nitroso-2-nitropropane [5275-46-7] (propylpseudonitrole), for example, yields 2,2-dinitropropane (60). [Pg.101]

In general, peroxomonosulfates have fewer uses in organic chemistry than peroxodisulfates. However, the triple salt is used for oxidizing ketones (qv) to dioxiranes (7) (71,72), which in turn are useful oxidants in organic chemistry. Acetone in water is oxidized by triple salt to dimethyldioxirane, which in turn oxidizes alkenes to epoxides, polycycHc aromatic hydrocarbons to oxides and diones, amines to nitro compounds, sulfides to sulfoxides, phosphines to phosphine oxides, and alkanes to alcohols or carbonyl compounds. [Pg.95]

Obsolete uses of urea peroxohydrate, as a convenient source of aqueous hydrogen peroxide, include the chemical deburring of metals, as a topical disinfectant and mouth wash, and as a hairdresser s bleach. In the 1990s the compound has been studied as a laboratory oxidant in organic chemistry (99,100). It effects epoxidation, the Baeyer-Villiger reaction, oxidation of aromatic amines to nitro compounds, and the conversion of sodium and nitrogen compounds to S—O and N—O compounds. [Pg.97]

Because thiols are easily oxidized, a host of organic and inorganic oxidants may be used. Mild oxidants such as oximes, nitro compounds, or air can be effective. Various oxidants have been used in special appHcations, but only a few are used in large-scale appHcations. [Pg.456]

Primary and secondary amines are oxidized to the respective hydroxyl amines, and further oxidation to the nitro compound occurs ia the case of primary amines. [Pg.192]

Nitroso compounds are formed selectively via the oxidation of a primary aromatic amine with Caro s acid [7722-86-3] (H2SO ) or Oxone (Du Pont trademark) monopersulfate compound (2KHSO KHSO K SO aniline black [13007-86-8] is obtained if the oxidation is carried out with salts of persulfiiric acid (31). Oxidation of aromatic amines to nitro compounds can be carried out with peroxytrifluoroacetic acid (32). Hydrogen peroxide with acetonitrile converts aniline in a methanol solution to azoxybenzene [495-48-7] (33), perborate in glacial acetic acid yields azobenzene [103-33-3] (34). [Pg.230]

Nitration. Direct nitration of aromatic amines with nitric acid is not a satisfactory method, because the amino group is susceptible to oxidation. The amino group can be protected by acetylation, and the acetylamino derivative is then used in the nitration step. Nitration of acetanilide in sulfuric acid yields the 4-nitro compound that is hydroly2ed to -rutroaruline [100-01-6]. [Pg.231]

In the Bnchamp process, nitro compounds are reduced to amines in the presence of iron and an acid. This is the oldest commercial process for preparing amines, but in more recent years it has been largely replaced by catalytic hydrogenation. Nevertheless, the Bnchamp reduction is still used in the dyestuff industry for the production of small volume amines and for the manufacture of iron oxide pigments aniline is produced as a by-product. The Bnchamp reduction is generally mn as a batch process however, it can also be mn as a continuous (48) or semicontinuous process (49). [Pg.262]

Water. Based on the overall balanced equation for this reaction, a minimum of one mole of water per mole of nitro compound is required for the reduction to take place. In practice, however, 4 to 5 moles of water per mole of nitro compound are used to ensure that enough water is present to convert all of the iron to the intermediate ferrous and ferric hydroxides. In some cases, much larger amounts of water are used to dissolve the amino compound and help separate it from the iron oxide sludge after the reaction is complete. [Pg.262]

Nucleophilic aromatic substitutions involving loss of hydrogen are known. The reaction usually occurs with oxidation of the intermediate either intramoleculady or by an added oxidizing agent such as air or iodine. A noteworthy example is the formation of 6-methoxy-2-nitrobenzonitrile from reaction of 1,3-dinitrobenzene with a methanol solution of potassium cyanide. In this reaction it appears that the nitro compound itself functions as the oxidizing agent (10). [Pg.39]

Hydroxyaminopyridazine 1-oxides are usually formed by catalytic hydrogenation of the corresponding nitro derivatives over palladium-charcoal in methanol, provided that the reaction is stopped after absorption of two moles of hydrogen. 3-Hydroxyaminopyridazine 1-oxide and 6-amino-4-hydroxyamino-3-methoxypyridazine 1-oxide are prepared in this way, while 5-hydroxyamino-3-methylpyridazine 2-oxide and 5-hydroxyamino-6-methoxy-3-methylpyridazine 2-oxide are obtained by chemical reduction of the corresponding nitro compounds with phenylhydrazine. [Pg.34]

The two major methods of preparation are the cycloaddition of nitrile oxides to alkenes and the reaction of a,/3-unsaturated ketones with hydroxylamines. Additional methods include reaction of /3-haloketones and hydroxylamine, the reaction of ylides with nitrile oxides by activation of alkyl nitro compounds from isoxazoline AT-oxides (methoxides, etc.) and miscellaneous syntheses (62HC(i7)i). [Pg.88]

The reaction of alkyl nitro compounds with acetyl chloride in the presence of an alkenic compound produced a 2-isoxazoline. The mechanism is believed to proceed via a nitrile oxide and is illustrated in Scheme 112 (B-79MI41613). [Pg.92]

N-Metal Derivatives N-Nitroso Compounds N-Nitro Compounds Azo Compounds Arenediazoates Arenediazo aryl sulphides Bis-arenediazo oxides Bis-arenediazo sulphides Trizazenes (R=H, -CN, -OH, -NO)... [Pg.236]


See other pages where Oxidation nitro compounds is mentioned: [Pg.13]    [Pg.13]    [Pg.486]    [Pg.154]    [Pg.108]    [Pg.119]    [Pg.97]    [Pg.361]    [Pg.198]    [Pg.257]    [Pg.257]    [Pg.258]    [Pg.337]    [Pg.150]    [Pg.469]    [Pg.262]    [Pg.91]    [Pg.103]    [Pg.167]    [Pg.788]    [Pg.480]   
See also in sourсe #XX -- [ Pg.1537 ]

See also in sourсe #XX -- [ Pg.1195 ]

See also in sourсe #XX -- [ Pg.230 ]




SEARCH



Carbonyl compounds nitro compound oxidation

Ceric ammonium nitrate, oxidation of nitro compounds

Nitrile oxides, cycloaddition with from primary nitro compounds

Nitro 4-oxid

Nitro compounds aliphatic, oxidative dimerization

Nitro compounds by oxidation

Nitro compounds via N-oxidation of oximes

Nitro compounds via oxidation of primary amines

Nitro compounds via solid support oxidation of amines

Nitro compounds, aliphatic oxidation

Nitro-compounds, organic oxidation

Oxidation of Amines into Nitro Compounds

Oxidation of Nitro Compounds

Oxidation to nitro compounds

Primary nitro compounds oxidation

Synthesis of Nitro Compounds by Oxidation

Tautomerism, nitro compounds oxide

© 2024 chempedia.info