Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitro compounds condensation

Like the ketones the primary nitro-compounds condense with aldehydes, water being eliminated. Phenylnitroethylene is conveniently prepared in this way. [Pg.160]

Benzo[6]thiophene aldehydes have been condensed with a variety of active methylene compounds, including cyclic511, 644 and open-chain645-647 ketones, aliphatic aldehydes,90 benzyl cyanides,93-436 malononitrile,487 rhodanine,144,648 hippuric acid,477 barbituric acid,487 diethyl malonate,487 and malonic acid (Section VI,M). Aliphatic nitro compounds condense smoothly with most benzo[6]-thiophene aldehydes03,141,337,343, 556,640,650 (except 5-hydroxy- and... [Pg.324]

Primary aliphatic nitro compounds condense smoothly with aldehydes or ketones. The primary product is usually the nitro compound, whence an unsaturated nitro compound can be obtained by esterification and subsequent removal of the elements of the esterifying acid ... [Pg.992]

Mix 1 g. of the nitro compound with 4 g, of sodium dichromate and 10 ml. of water in a 50 ml. flask, then attach a reflux condenser to the flask. Add slowly and with shaking 7 ml. of concentrated sulphuric acid. The reaction usually starts at once if it does not, heat the flask gently to initiate the reaction. When the heat of reaction subsides, boil the mixture, cautiously at first, under reflux for 20-30 minutes. Allow to cool, dilute with 30 ml. of water, and filter oflF the precipitated acid. Purify the crude acid by extraction with sodium carbonate solution, precipitation with dUute mineral acid, and recrystaUisation from hot water, benzene, etc. [Pg.529]

Cautiously add 250 g. (136 ml.) of concentrated sulphuric acid in a thin stream and with stirring to 400 ml. of water contained in a 1 litre bolt-head or three-necked flask, and then dissolve 150 g. of sodium nitrate in the diluted acid. Cool in a bath of ice or iced water. Melt 94 g. of phenol with 20 ml. of water, and add this from a separatory funnel to the stirred mixture in the flask at such a rate that the temperature does not rise above 20°. Continue the stirring for a further 2 hours after all the phenol has been added. Pour oflF the mother liquid from the resinous mixture of nitro compounds. Melt the residue with 500 ml. of water, shake and allow the contents of the flask to settle. Pour oflF the wash liquor and repeat the washing at least two or three times to ensure the complete removal of any residual acid. Steam distil the mixture (Fig. II, 40, 1 or Fig. II, 41, 1) until no more o-nitrophenol passes over if the latter tends to solidify in the condenser, turn oflF the cooling water temporarily. Collect the distillate in cold water, filter at the pump, and drain thoroughly. Dry upon filter paper in the air. The yield of o-nitrophenol, m.p. 46° (1), is 50 g. [Pg.677]

Reduction of a nitro compound to a primary amine. In a 50 ml. round-bottomed or conical flask fitted with a reflux condenser, place 1 g. of the nitro compound and 2 g. of granulated tin. Measure out 10 ml. of concentrated hydrochloric acid and add it in three equal portions to the mixtiue shake thoroughly after each addition. When the vigorous reaction subsides, heat under reflux on a water bath until the nitro compound has completely reacted (20-30 minutes). Shake the reaction mixture from time to time if the nitro compound appears to be very insoluble, add 5 ml. of alcohol. Cool the reaction mixture, and add 20-40 per cent, sodium hydroxide solution imtil the precipitate of tin hydroxide dissolves. Extract the resulting amine from the cooled solution with ether, and remove the ether by distillation. Examine the residue with regard to its solubility in 5 per cent, hydrochloric acid and its reaction with acetyl chloride or benzene-sulphonyl chloride. [Pg.1076]

Synthesis The trans nitro compound is the one we get by condensation as it is more stable than the cis compound. [Pg.77]

Michael condensations are catalyzed by alkaU alkoxides, tertiary amines, and quaternary bases and salts. Active methylene compounds and aUphatic nitro compounds add to form P-substituted propionates. These addition reactions are frequendy reversible at high temperatures. Exceptions are the tertiary nitro adducts which are converted to olefins at elevated temperatures (24). [Pg.151]

A nitro alcohol is formed when an ahphatic nitro compound with a hydrogen atom on the nitro-bearing carbon atom reacts with an aldehyde in the presence of a base. Many such compounds have been synthesized, but only those formed by the condensation of formaldehyde (qv) and the lower nitroparaffins (qv) are marketed commercially. The condensation may occur one to three times, depending on the number of hydrogen atoms on the nitro-substituted carbon (R and R = H or alkyl), and yield nitro alcohols with one to three hydroxyl groups. [Pg.60]

These reversible reactions are cataly2ed by bases or acids, such as 2iac chloride and aluminum isopropoxide, or by anion-exchange resias. Ultrasonic vibrations improve the reaction rate and yield. Reaction of aromatic aldehydes or ketones with nitroparaffins yields either the nitro alcohol or the nitro olefin, depending on the catalyst. Conjugated unsaturated aldehydes or ketones and nitroparaffins (Michael addition) yield nitro-substituted carbonyl compounds rather than nitro alcohols. Condensation with keto esters gives the substituted nitro alcohols (37) keto aldehydes react preferentially at the aldehyde function. [Pg.100]

Condensation ofDianhydrides with Diamines. The preparation of polyetherknides by the reaction of a diamine with a dianhydride has advantages over nitro-displacement polymerization sodium nitrite is not a by-product and thus does not have to be removed from the polymer, and a dipolar aprotic solvent is not required, which makes solvent-free melt polymerization a possibiUty. Aromatic dianhydride monomers (8) can be prepared from A/-substituted rutrophthalimides by a three-step sequence that utilizes the nitro-displacement reaction in the first step, followed by hydrolysis and then ring closure. For the 4-nitro compounds, the procedure is as follows. [Pg.334]

A -Heterocyclic-A -acetylsulfanilamides. These derivatives may be prepared by condensation of the heterocycUc amine with /)-nitroben2enesu1fony1 chloride foUowed by acetylation of the nitro compound. The product may be reduced under mild conditions to give the 4-amiQO-A/ -heterocychc-A/ -acetyl derivative. Other approaches, however, have been developed (46,47). [Pg.469]

Three important direct yeUows of revealed chemical composition belong to the stUbene class. Direct YeUow 11 (24) was mentioned earUer in the discussion of the condensation of nitro compounds. Another stUbene dye. Direct YeUow 4 (63), an old dyestuff discovered in 1886, is produced by coupling bisdiazotized 4,4 -diainino-2,2 -stilbenedisulfonic acid to two moles of phenol. [Pg.440]

Thiophenealdehydes have been condensed with aliphatic aldehydes, methyl ketones,cyclic ketones, " benzyl cyanides,and aliphatic nitro compounds to the corresponding vinylthiophenes. By the use of potassium methylate, 2-thiophenealdehyde has been condensed with the reactive methyl groups of iV-heterocyclic compounds. Thiophenealdehydes have... [Pg.94]

In this method the nitro group in the aliphatic nitro compound is usually present on a carbon atom, which is also activated by CO-functioiiality (aldehyde, ester, arylketoiie). A successful application of this method is the Borsche modification of the Friedlander synthesis, involving condensation of A-(3-amino-4-picolylidene)-p-toluidine (17) with [Pg.289]

Thus, various kmds of bases are effective in inducing the Henry reaction The choice of base and solvent is not crucial to carry out the Henry reaction of simple nitroalkanes v/ith aldehydes, as summarized in Table 3 1 In general, sterically hindered carbonyl or nitro compounds are less reactive not to give the desired ni tro-aldol products in good yield In such cases, self-condensation of the carbonyl compound is a serious side-reaction Several mochfied procedures for the Henry reaction have been developed... [Pg.32]

Notable examples of general synthetic procedures in Volume 47 include the synthesis of aromatic aldehydes (from dichloro-methyl methyl ether), aliphatic aldehydes (from alkyl halides and trimethylamine oxide and by oxidation of alcohols using dimethyl sulfoxide, dicyclohexylcarbodiimide, and pyridinum trifluoro-acetate the latter method is particularly useful since the conditions are so mild), carbethoxycycloalkanones (from sodium hydride, diethyl carbonate, and the cycloalkanone), m-dialkylbenzenes (from the />-isomer by isomerization with hydrogen fluoride and boron trifluoride), and the deamination of amines (by conversion to the nitrosoamide and thermolysis to the ester). Other general methods are represented by the synthesis of 1 J-difluoroolefins (from sodium chlorodifluoroacetate, triphenyl phosphine, and an aldehyde or ketone), the nitration of aromatic rings (with ni-tronium tetrafluoroborate), the reductive methylation of aromatic nitro compounds (with formaldehyde and hydrogen), the synthesis of dialkyl ketones (from carboxylic acids and iron powder), and the preparation of 1-substituted cyclopropanols (from the condensation of a 1,3-dichloro-2-propanol derivative and ethyl-... [Pg.144]

The condensation of nitro compounds and imines, the so-called aza-Henry or nitro-Mannich reaction, has recently emerged as a powerful tool for the enantioselective synthesis of 1,2-diamines through the intermediate /3-amino nitro compounds. The method is based on the addition of a nitronate ion (a-nitro carbanion), generated from nitroalkanes, to an imine. The addition of a nitronate ion to an imine is thermodynamically disfavored, so that the presence of a protic species or a Lewis acid is required, to activate the imine and/or to quench the adduct. The acidic medium is compatible with the existence of the nitronate anion, as acetic acid and nitromethane have comparable acidities. Moreover, the products are often unstable, either for the reversibility of the addition or for the possible /3-elimination of the nitro group, and the crude products are generally reduced, avoiding purification to give the desired 1,2-diamines. Hence, the nitronate ion is an equivalent of an a-amino carbanion. [Pg.16]

The condensation of arylsulfonyl acetonitriles 369a-c with 22a proceeds via addition of the in-situ formed anion 370 to the arylsulfonyl acetonitriles 369 to afford the dimers 371, in 69-94% yield, and hexamethyldisiloxane 7 [136]. Furthermore, y9-dicarbonyl compounds such as ethyl acetoacetate 372 a or ethyl benzoyl-acetate 372b are O-silylated by 22 a or 22 c to rather stable alkyl 3-O-trimethylsilyl-oxycrotonoate 373a and alkyl 3-0-trimethylsilyloxy-3-phenyl acrylate 373b [130]. Aliphatic nitro compounds such as nitromethane are O-trimethylsilylated and further transformed into oligomers [132] (cf Section 7.6) and are thus unsuitable reactants for silylation-C-substitutions (Scheme 4.50). [Pg.75]

A detailed study of the role of the base in the formation of 2-isoxazolines by condensation of primary nitro compounds with alkenes in the presence of the tertiary diamine 1,4-diazabicyclo[2.2.2]octane (DABCO) was published <06EJO4852 06EJ03016>. [Pg.293]

A similar strategy has been used for the Biginelli condensation reaction to synthesize a set of pyrimidinones (65-95%) in a household MW oven [152]. This MW approach has been successfully applied to combinatorial synthesis [153]. Yet another example is the convenient synthesis of pyrroles (60-72 %) on silica gel using readily available enones, amines and nitro compounds [154]. [Pg.208]

Oxidation of primary amines with DMD or other oxidants leads to the formation of a complex mixture of nitroso, oximes, and nitro compounds (76). Utilization of DMD in acetone affords dimethyl nitrone (22). This is likely to be a result of the initial oxidation of primary amine (19) to hydroxylamine (20) with the subsequent condensation of acetone and oxidation of imine (21) (Scheme 2.9) (77). [Pg.136]

I. Condensation of N-Monosubstituted Hydroxylamines with Carbonyl Compounds Condensation of N -monosubstituted hydroxylamines with carbonyl compounds is used as a direct synthesis of many acyclic nitrones. The synthesis of hydroxylamines is being carried out in situ via reduction of nitro compounds with zinc powder in the presence of weak acids (NH4CI or AcOH) (14, 18, 132). The reaction kinetics of benzaldehyde with phenylhydroxylamine and the subsequent reaction sequence are shown in Scheme 2.21 (133). [Pg.146]

Recently, C,N condensation of salts of nitro compounds with the nitroso group has been discovered (251, 451) (Scheme 3.190). This reaction can be considered as a convenient procedure for the synthesis of nitrones from AN. The yields of the target products are 40 to 97 %. [Pg.610]

However, this multistep procedure is experimentally complex. A simpler variation described in 199127 consists of the reaction of an aldehyde and a nitro compound in the presence of triethylamine, TBAF and tert-butyl-dimethylsilyl chloride. Under these conditions, nitro sugars are obtained in good yieds and higher diastereoselectivities than those afforded by the standard conditions. This procedure was used in several synthesis of 2-nitro-2-deoxyaldoses, as for the condensation of l,l-diethoxy-2-nitroethane and l,2 3,4-di-0-isopropylidene-a-D-galacto-hexodialdo-l,5-piranose.28 More recently, it was applied to the addition of ethyl nitroacetate to the D-glucose derived aldehyde 18, to give nitro sugar derivatives 26, key precursors of polysubstituted cyclohexane a-amino acids (Scheme 10).29... [Pg.176]

The mechanism of the coupling reaction has been very exhaustively studied. Summarising first what has already been mentioned, it must be noted that the reaction is not confined to the aromatic series, for diazo-compounds condense also with enols and with the very closely related aliphatic aci-nitro-compounds. The final products of these reactions are not azo-compounds, but the isomeric hydrazones formed from them by rearrangement. [Pg.306]


See other pages where Nitro compounds condensation is mentioned: [Pg.529]    [Pg.538]    [Pg.830]    [Pg.55]    [Pg.942]    [Pg.71]    [Pg.1327]    [Pg.189]    [Pg.529]    [Pg.538]    [Pg.664]    [Pg.166]    [Pg.201]    [Pg.446]    [Pg.610]    [Pg.28]    [Pg.182]    [Pg.78]   
See also in sourсe #XX -- [ Pg.751 ]




SEARCH



Condensation compounds

© 2024 chempedia.info