Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrile oxides natural products

In theory, three isoxazolines are capable of existence 2-isoxazoline (2), 3-isoxazoline and 4-isoxazoline. The position of the double bond may also be designated by the use of the prefix A with an appropriate numerical superscript. Of these only the 2-isoxazolines have been investigated in any detail. The preparation of the first isoxazoline, 3,5-diphenyl-2-isoxazoline, from the reaction of )3-chloro-)3-phenylpropiophenone with hydroxylamine was reported in 1895 (1895CB957). Two major syntheses of 2-isoxazolines are the cycloaddition of nitrile A-oxides to alkenes and the reaction of a,/3-unsaturated ketones with hydroxylamine. Since 2-isoxazolines are readily oxidized to isoxazoles and possess some of the unique properties of isoxazoles, they also serve as key intermediates for the synthesis of other heterocycles and natural products. [Pg.3]

Few reactions of sulfonylfuroxans with olefins have been reported. Depending on the substituents at the furoxan ring, nature of dipolarophile, and temperature, different types of products may be obtained. It is relatively simple to cyclore-vert disulfonylfuroxans to a-sulfonyl nitrile oxides on thermolysis (81TL3371, 85T727). These nitrile oxides were trapped by dipolarophiles to yield sulfonyl-substituted isoxazole derivatives. For example, 3,4-bis(phenylsulfonyl)furoxan reacts with an excess of styrene in xylene under reflux to afford the corresponding isoxazoline 290 (Scheme 189). [Pg.161]

Natural products, synthesis of 829, 835, 837, 840-842, 948, 958 Nitrile oxides, reactions of 807 Nitriles - see also y-Ketonitriles reactions of 277 synthesis of 815 Nitrilimines, reactions of 277 Nitritosulphonium intermediates 206 Nitrogen compounds, as oxidizing agents 970-972... [Pg.1202]

Among the many recent applications to natural products, syntheses of pyrrolizidine and indolizidine alkaloids that take advantage of the 1,3-dipolar cycloaddition methodology have been reviewed [8]. The regio- and stereochemistry [9] as well as synthetic appHcations [10] of nitrile oxide cycloadditions have also been discussed. [Pg.2]

Primary nitro compounds are good precursors for preparing nitriles and nitrile oxides (Eq. 6.31). The conversion of nitro compounds into nitrile oxides affords an important tool for the synthesis of complex natural products. Nitrile oxides are reactive 1,3-dipoles that form isoxazolines or isoxazoles by the reaction with alkenes or alky nes, respectively. The products are also important precursors for various substrates such as P-amino alcohols, P-hydroxy ketones, P-hydroxy nitriles, and P-hydroxy acids (Scheme 6.3). Many good reviews concerning nitrile oxides in organic synthesis exist some of them are listed here.50-56 Applications of organic synthesis using nitrile oxides are discussed in Section 8.2.2. [Pg.167]

This regioselectivity is practically not influenced by the nature of subsituent R. 3,5-Disubstituted isoxazolines are the sole or main products in [3 + 2] cycloaddition reactions of nitrile oxides with various monosubstituted ethylenes such as allylbenzene (99), methyl acrylate (105), acrylonitrile (105, 168), vinyl acetate (168) and diethyl vinylphosphonate (169). This is also the case for phenyl vinyl selenide (170), though subsequent oxidation—elimination leads to 3-substituted isoxazoles in a one-pot, two-step transformation. 1,1-Disubstituted ethylenes such as 2-methylene-1 -phenyl-1,3-butanedione, 2-methylene-1,3-diphenyl- 1,3-propa-nedione, 2-methylene-3-oxo-3-phenylpropanoates (171), 2-methylene-1,3-dichlo-ropropane, 2-methylenepropane-l,3-diol (172) and l,l-bis(diethoxyphosphoryl) ethylene (173) give the corresponding 3-R-5,5-disubstituted 4,5-dihydrooxazoles. [Pg.22]

Intramolecular Cycloaddition Intramolecular nitrile oxide cycloaddition (INOC) is widely used in the synthesis of various compounds, particularly, natural products. This field is reviewed in detail in Chapter 6 of the mono-graph/Reference 5 and also in Reference 400 limited to nitrile oxides generated from nitroalkenes. Some features of INOC are illustrated in this subsection by new data and those omitted in Reference 5. [Pg.70]

A.1.3. Syntheses of Natural Products and Related Compounds 1,3-Dipolar cycloaddition reactions of nitrile oxides in the synthesis of natural products and their analogs has been the subject of a recent review (458). [Pg.90]

A total synthesis of the sesquiterpene ( )-illudin C 420 has been described. The tricyclic ring system of the natural product is readily quickly assembled from cyclopropane and cyclopentene precursors via a novel oxime dianion coupling reaction and a subsequent intramolecular nitrile oxide—olefin cycloaddition (463). [Pg.91]

A stereoselective total synthesis of erythronolide A, using two Mg/z-mediated cycloadditions of nitrile oxides has been described. Of broader significance, the strategy not only facilitates the synthesis of specific polyketide targets (i.e., natural products) but also opens up new possibilities for the preparation of nonnatural analogs (482). [Pg.97]

The synthesis of the spiroisoxazoline natural product (+ )-calafianin 447 has been reported, using asymmetric nucleophilic epoxidation and nitrile oxide cycloaddition as key steps. Syntheses and spectral analyses of all calafianin stereoisomers lead to unambiguous assignments of relative and absolute stereochemistry (494). [Pg.100]

Acyl nitroso compounds react with 1, 3-dienes as N-O heterodienophiles to produce cycloadducts, which have found use in the total synthesis of a number of nitrogen-containing natural products [21]. The cycloadducts of acyl nitroso compounds and 9,10-dimethylanthracene (4, Scheme 7.3) undergo thermal decomposition through retro-Diels-Alder reactions to produce acyl nitroso compounds under non-oxidative conditions and at relatively mild temperatures (40-100°C) [11-14]. Decomposition of these compounds provides a particularly clean method for the formation of acyl nitroso compounds. Photolysis or thermolysis of 3, 5-diphenyl-l, 2, 4-oxadiazole-4-oxide (5) generates the aromatic acyl nitroso compound (6) and ben-zonitrile (Scheme 7.3) [22, 23]. Other reactions that generate acyl nitroso compounds include the treatment of 5 with a nitrile oxide [24], the addition of N-methyl morpholine N-oxide to nitrile oxides and the decomposition of N, O-diacylated or alkylated N-hydroxyarylsulfonamides [25-29]. [Pg.179]

From the 1980s on, many efforts were directed toward asymmetric induction of nitrile oxide cycloadditions to give pure (dia)stereoisomeric isoxazolines, and acyclic products derived from them (17,18,20-23). The need to obtain optically active cycloaddition products for use in the synthesis of natural products was first served by using chiral olefins, relying on 1,2-asymmetric induction, and then with optically active aldehydes or nitro compounds for the nitrile oxide part. In the latter case, insufficient induction occurs using chiral nitrile oxides, a problem still unsolved today. Finally, in the last 5 years, the first cases of successful asymmetric catalysis were found (29), which will certainly constitute a major area of study in the coming decade. [Pg.363]

Intramolecular nitrile oxide cycloadditions were first studied by Garanti and coworkers (24) in 1975, employing 0-allyl derivatives of salicylic aldehyde. The first example of a carbocycle-forming process was reported in 1977 (25). This process (sometimes referred to as INOC) has seen many extensions and applications for the synthesis of natural and unnatural products alike, notably by the groups of Kozikowski, Curran, Fukumoto, and Shishido (see Section 6.4). [Pg.407]

The intramolecular nitrile oxide-alkene cycloaddition sequence has been used for the assembly of a great variety of natural products. A target that has received special attention is that of taxol (156), undoubtedly due to its unique structural features, its potent anticancer activity, and its hmited availability from natural sources (318,319). In 1984 Kozikowski et al. found that the treatment of nitro dienone 158 (obtained from the p-benzoquinone derivative 157) with p-chlorophe-nyl isocyanate under Mukaiyama conditions afforded the unexpected eight-mem-bered ring 159, which is related to ring B of taxol (156) (Scheme 6.79). [Pg.437]

In the great major tiy of applications that use the intramolecular nitrile oxide-alkene cycloaddition, the intention is to prepare intermediates for the synthesis of natural products or related compounds. The most popular transformations of these isoxazolines are the following ring cleavage modes ... [Pg.439]

The above dramatic dependence of regio- and stereoselectivity on the nature of the metal can be explained by the reaction mechanism shown in Scheme 11.49 (167). The nitrone cycloadditions of allylic alcohols are again magnesium-specific just like the nitrile oxide reactions described in Section 11.2.2. Magnesium ions accelerate the reaction through a metal ion-bound intramolecular cycloaddition path. On the other hand, zinc ions afford no such rate acceleration, but these ions catalyze the acetalization at the benzoyl carbonyl moiety of the nitrone to provide a hemiacetal intermediate. The subsequent intramolecular regio- and stereoselective cycloaddition reaction gives the observed products. [Pg.798]

The auxihary acrylates 161 and 162 have been used in 1,3-dipolar cycloadditions with nitrile oxides. The camphor-derived acrylate 161 underwent a 1,3-dipolar cycloaddition with benzonitrile oxide with up to 56% de (Scheme 12.51) (263). The auxiliary in acrylate 162 is derived from naturally occurring L-quebrachitol, and provided an effective shielding of the re-face of the alkene in the reaction with benzonitrile oxide, as 90% de was obtained (273). Compound 163 was used in a reaction with the nitrone 1-pyrrole-1-oxide, and the reaction proceeded to give a complex mixture of products (274). [Pg.853]


See other pages where Nitrile oxides natural products is mentioned: [Pg.3]    [Pg.733]    [Pg.112]    [Pg.1150]    [Pg.20]    [Pg.102]    [Pg.35]    [Pg.94]    [Pg.20]    [Pg.131]    [Pg.259]    [Pg.264]    [Pg.363]    [Pg.387]    [Pg.425]    [Pg.430]    [Pg.322]    [Pg.836]    [Pg.287]    [Pg.311]    [Pg.349]    [Pg.354]    [Pg.733]    [Pg.1078]   
See also in sourсe #XX -- [ Pg.416 , Pg.417 ]

See also in sourсe #XX -- [ Pg.416 ]




SEARCH



Natural products oxidation

Nitrile oxides

Nitriles nitrile oxides

Nitriles production

Oxidative nitriles

© 2024 chempedia.info