Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereoselectivity cycloaddition reactions

Cycloaddition involves the combination of two molecules in such a way that a new ring is formed. The principles of conservation of orbital symmetry also apply to concerted cycloaddition reactions and to the reverse, concerted fragmentation of one molecule into two or more smaller components (cycloreversion). The most important cycloaddition reaction from the point of view of synthesis is the Diels-Alder reaction. This reaction has been the object of extensive theoretical and mechanistic study, as well as synthetic application. The Diels-Alder reaction is the addition of an alkene to a diene to form a cyclohexene. It is called a [47t + 27c]-cycloaddition reaction because four tc electrons from the diene and the two n electrons from the alkene (which is called the dienophile) are directly involved in the bonding change. For most systems, the reactivity pattern, regioselectivity, and stereoselectivity are consistent with describing the reaction as a concerted process. In particular, the reaction is a stereospecific syn (suprafacial) addition with respect to both the alkene and the diene. This stereospecificity has been demonstrated with many substituted dienes and alkenes and also holds for the simplest possible example of the reaction, that of ethylene with butadiene ... [Pg.636]

Cyanoallene, when treated with the morpholine enamine of cyclohexanone, undergoes a 1,3-cycloaddition reaction to form 72 (89). The reaction between cyanoallene and diendiamine 73a produces di-1,2-cycloaddition adduct 73 (i 9). The 4a-azonioanthracene ion (73b) readily undergoes a 1,4-cycloaddition reaction with nucleophilic dienophiles such as enamines (89a). The cycloaddition is stereoselective so that the a- and... [Pg.228]

The chiral BOX-copper(ll) complexes, (S)-21a and (l )-21b (X=OTf, SbFg), were found by Evans et al. to catalyze the enantioselective cycloaddition reactions of the a,/ -unsaturated acyl phosphonates 49 with ethyl vinyl ether 46a and the cyclic enol ethers 50 giving the cycloaddition products 51 and 52, respectively, in very high yields and ee as outlined in Scheme 4.33 [38b]. It is notable that the acyclic and cyclic enol ethers react highly stereoselectively and that the same enantiomer is formed using (S)-21a and (J )-21b as the catalyst. It is, furthermore, of practical importance that the cycloaddition reaction can proceed in the presence of only 0.2 mol% (J )-21a (X=SbF6) with minimal reduction in the yield of the cycloaddition product and no loss of enantioselectivity (93% ee). [Pg.179]

The absolute configuration of products obtained in the highly stereoselective cycloaddition reactions with inverse electron-demand catalyzed by the t-Bu-BOX-Cu(II) complex can also be accounted for by a square-planar geometry at the cop-per(II) center. A square-planar intermediate is supported by the X-ray structure of the hydrolyzed enone bound to the chiral BOX-copper(II) catalyst, shown as 29b in Scheme 4.24. [Pg.181]

A model for the mechanism of the highly enantioselective AlMe-BINOL-cata-lyzed 1,3-dipolar cycloaddition reaction was proposed as illustrated in Scheme 6.13. In the first step nitrone la coordinates to the catalyst 11b to form intermediate 12. In intermediate 13, which is proposed to account for the absolute stereoselectivity of this reaction, it is apparent that one of the faces of the nitrone, the si face, is shielded by the ligand whereas the re face remains available... [Pg.220]

A rather unexpected discovery was made in connection to these investigations [49]. When the 1,3-dipolar cycloaddition reaction of la with 19b mediated by catalyst 20 (X=I) was performed in the absence of MS 4 A a remarkable reversal of enantioselectivity was observed as the opposite enantiomer of ench-21 was obtained (Table 6.1, entries 1 and 2). This had not been observed for enantioselective catalytic reactions before and the role of molecular sieves cannot simply be ascribed to the removal of water by the MS, since the application of MS 4 A that were presaturated with water, also induced the reversal of enantioselectivity (Table 6.1, entries 3 and 4). Recently, Desimoni et al. also found that in addition to the presence of MS in the MgX2-Ph-BOX-catalyzed 1,3-dipolar addition shown in Scheme 6.17, the counter-ion for the magnesium catalyst also strongly affect the absolute stereoselectivity of the reac-... [Pg.224]

The final class of reactions to be considered will be the [4 + 2]-cycloaddition reaction of nitroalkenes with alkenes which in principle can be considered as an inverse electron-demand hetero-Diels-Alder reaction. Domingo et al. have studied the influence of reactant polarity on the reaction course of this type of reactions using DFT calculation in order to understand the regio- and stereoselectivity for the reaction, and the role of Lewis acid catalysis [29]. The reaction of e.g. ni-troethene 15 with an electron-rich alkene 16 can take place in four different ways and the four different transition-state structures are depicted in Fig. 8.16. [Pg.320]

It has been established that alkoxy alkenylcarbene complexes participate as dienophiles in Diels-Alder reactions not only with higher rates but also with better regio- and stereoselectivities than the corresponding esters [95]. This is clearly illustrated in Scheme 51 for the reactions of an unsubstituted vinyl complex with isoprene. This complex reacts to completion at 25 °C in 3 h whereas the cycloaddition reaction of methyl acrylate with isoprene requires 7 months at the same temperature. The rate enhancement observed for this complex is comparable to that for the corresponding aluminium chloride-catalysed reactions of methyl acrylate and isoprene (Scheme 51). [Pg.94]

Stereoselective inverse-demand hetero (4 + 2) cycloadditions. A Chiral Template for C-Aryl Glycoside Synthesis. Chiral allenamides2 4 had been used in highly stereoselective inverse-demand hetero (4 + 2) cycloaddition reactions with heterodienes.5 These reactions lead to stereoselective synthesis of highly functionalized pyranyl heterocycles. Further elaboration of these cycloadducts provides a unique entry to C-aryl-glycosides and pyranyl structures that are common in other natural products (Scheme 1). [Pg.79]

Epoxidations of chiral allenamides lead to chiral nitrogen-stabilized oxyallyl catioins that undergo highly stereoselective (4 + 3) cycloaddition reactions with electron-rich dienes.6 These are the first examples of epoxidations of allenes, and the first examples of chiral nitrogen-stabilized oxyallyl cations. Further elaboration of the cycloadducts leads to interesting chiral amino alcohols that can be useful as ligands in asymmetric catalysis (Scheme 2). [Pg.79]

First stereoselective [4 + 2] cycloaddition reactions of 3-cyanochromone derivatives with electron-rich dienes an approach to the ABC tricyclic frame of arysugacin [150]... [Pg.88]

The discovery that Lewis acids can promote Diels-Alder reactions has become a powerful tool in synthetic organic chemistry. Yates and Eaton [4] first reported the remarkable acceleration of the reactions of anthracene with maleic anhydride, 1,4-benzoquinone and dimethyl fumarate catalyzed by aluminum chloride. The presence of the Lewis-acid catalyst allows the cycloadditions to be carried out under mild conditions, reactions with low reactive dienes and dienophiles are made possible, and the stereoselectivity, regioselectivity and site selectivity of the cycloaddition reaction can be modified [5]. Consequently, increasing attention has been given to these catalysts in order to develop new regio- and stereoselective synthetic routes based on the Diels-Alder reaction. [Pg.99]

Cycloaddition reactions of (E)-l-acetoxybutadiene (18a) and (E)-l-methoxy-butadiene (18b) with the acrylic and crotonic dienophiles 19 were studied under high pressure conditions [9] (Table 5.1). Whereas the reactions of 18a with acrylic dienophiles regioselectively and stereoselectively afforded only ortho-enJo-adducts 20 in fair to good yields, those with crotonic dienophiles did not work. Similar results were obtained in the reactions with diene 18b. The loss of reactivity of the crotonic dienophiles has been ascribed to the combination of steric and electronic effects due to the methyl group at the )S-carbon of the olefinic double bond. [Pg.208]

Lopez J. C., Lukacs G. Pyranose-Derived Dienes and Conjugated Enals. Preparation and Diels-Alder Cycloaddition Reactions ACS Symp. Ser. 1992 494 33-49 Keywords carbohydrate, befera-Diels-Alder reactions, stereoselectivity... [Pg.321]

Kunz H., Mueller B., Pfrengle, W., Rueck K., Staehle W. Carbohydrates As Chiral Templates in Stereoselective [4 + 2 Cycloaddition Reactions ACS Symp. Ser. 1992 494 131-146... [Pg.321]

The 2-azadiene system of the pyrazinone scaffold undergoes inter- and intramolecular cycloaddition reactions with a variety of (functionalized) alkenes forming bicyclic adducts, leading to the stereoselective generation of a variety of natural product analogues as well as peptidomimetics [58]. These bicyclic compounds could serve as key intermediates in the synthesis... [Pg.281]

The C(6)-C(15) segment was synthesized by Steps C-l and C-2. The stereoselectivity of the cycloaddition reaction between the nitrile oxide and allylic alcohol is the result of a chelated TS involving the Mg alkoxide.39... [Pg.1226]

Having an efficient total synthesis of the indole alkaloid vindoline in mind, the Boger group [47] developed a facile entry to its core structure using a domino [4+2]/[3+2] cycloaddition. Reaction of the 1,3,4-oxadiazoles 4-139 led to 4-140 in high yield and excellent stereoselectivity via the intermediates 4-141 and 4-142 (Scheme 4.29). [Pg.300]

Dipolar cycloaddition reaction of benzo(A)thiophene-l,1-dioxide 282 with nonstabilized azomethine ylides gave high overall yield of new pyrrolo derivatives 5 and 6 with low stereoselectivity (Scheme 50) <2006TL5139>. [Pg.671]

An intramolecular nitrone 1,3-dipolar cycloaddition reaction to give 46 from 45 followed by reductive N-O bond cleavage afforded a stereoselective synthesis of the tetrahydro 177-1-benzazepines 47 the nitrone precursors 44 were prepared in turn by a Claisen rearrangement from an IV-allylamine <06SL2275>. [Pg.443]

Cycloaddition reactions, which increase molecular complexity by formation of a cyclic compound and, simultaneously, two C-C or C-X bonds [1], are among the most widely used reactions in organic synthesis. The reactions are also regio- and stereoselective. For these reasons, such processes are usually the key step in the multistep synthesis of natural products. [Pg.295]


See other pages where Stereoselectivity cycloaddition reactions is mentioned: [Pg.247]    [Pg.159]    [Pg.90]    [Pg.270]    [Pg.271]    [Pg.309]    [Pg.180]    [Pg.210]    [Pg.211]    [Pg.239]    [Pg.248]    [Pg.249]    [Pg.303]    [Pg.325]    [Pg.78]    [Pg.272]    [Pg.37]    [Pg.56]    [Pg.250]    [Pg.122]    [Pg.258]    [Pg.184]    [Pg.548]    [Pg.117]    [Pg.77]    [Pg.269]    [Pg.807]    [Pg.96]    [Pg.191]    [Pg.342]   
See also in sourсe #XX -- [ Pg.890 ]




SEARCH



Cycloaddition stereoselection

Reaction stereoselectivity

Stereoselective cycloadditions

Stereoselective reactions

© 2024 chempedia.info