Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitric oxide temperature

At the high temperatures found in MHD combustors, nitrogen oxides, NO, are formed primarily by gas-phase reactions, rather than from fuel-bound nitrogen. The principal constituent is nitric oxide [10102-43-9] NO, and the amount formed is generally limited by kinetics. Equilibrium values are reached only at very high temperatures. NO decomposes as the gas cools, at a rate which decreases with temperature. If the combustion gas cools too rapidly after the MHD channel the NO has insufficient time to decompose and excessive amounts can be released to the atmosphere. Below about 1800 K there is essentially no thermal decomposition of NO. [Pg.422]

In a vacuum, uncoated molybdenum metal has an unlimited life at high temperatures. This is also tme under the vacuum-like conditions of outer space. Pure hydrogen, argon, and hehum atmospheres are completely inert to molybdenum at all temperatures, whereas water vapor, sulfur dioxide, and nitrous and nitric oxides have an oxidizing action at elevated temperatures. Molybdenum is relatively inert to carbon dioxide, ammonia, and nitrogen atmospheres up to about 1100°C a superficial nitride film may be formed at higher temperatures in the latter two gases. Hydrocarbons and carbon monoxide may carburize molybdenum at temperatures above 1100°C. [Pg.465]

The first such process was the Birkeland-Eyde process for N2 oxidation, implemented in 1905 (12). In this process, air is passed through an electric arc at temperatures above 3000°C to generate nitric oxide [10102-43-9] NO. [Pg.82]

At room temperature, Htde reaction occurs between carbon dioxide and sodium, but burning sodium reacts vigorously. Under controUed conditions, sodium formate or oxalate may be obtained (8,16). On impact, sodium is reported to react explosively with soHd carbon dioxide. In addition to the carbide-forrning reaction, carbon monoxide reacts with sodium at 250—340°C to yield sodium carbonyl, (NaCO) (39,40). Above 1100°C, the temperature of the DeviHe process, carbon monoxide and sodium do not react. Sodium reacts with nitrous oxide to form sodium oxide and bums in nitric oxide to form a mixture of nitrite and hyponitrite. At low temperature, Hquid nitrogen pentoxide reacts with sodium to produce nitrogen dioxide and sodium nitrate. [Pg.163]

At high flame temperatures, small amounts of nitrogen react with oxygen to form nitrogen oxides, NO, primarily nitric oxide, NO. The chemistry of these nitrogen oxides is complex. Ultimately, however, some form nitrosylsulfuric acid, which ends up either as trace amounts in product acids or, in considerably higher concentrations, as condensed acid collected at mist eliminators. [Pg.184]

Physical properties of hexachloroethane are Hsted in Table 11. Hexachloroethane is thermally cracked in the gaseous phase at 400—500°C to give tetrachloroethylene, carbon tetrachloride, and chlorine (140). The thermal decomposition may occur by means of radical-chain mechanism involving -C,C1 -C1, or CCl radicals. The decomposition is inhibited by traces of nitric oxide. Powdered 2inc reacts violentiy with hexachloroethane in alcohoHc solutions to give the metal chloride and tetrachloroethylene aluminum gives a less violent reaction (141). Hexachloroethane is unreactive with aqueous alkali and acid at moderate temperatures. However, when heated with soHd caustic above 200°C or with alcohoHc alkaHs at 100°C, decomposition to oxaHc acid takes place. [Pg.15]

The reaction vessel (nitrator) is constructed of cast iron, mild carbon steel, stainless steel, or glass-lined steel depending on the reaction environment. It is designed to maintain the required operating temperature with heat-removal capabiUty to cope with this strongly exothermic and potentially ha2ardous reaction. Secondary problems are the containment of nitric oxide fumes and disposal or reuse of the dilute spent acid. Examples of important intermediates resulting from nitration are summarized in Table 3. [Pg.288]

Nitric oxide, NO, results from high-temperature combustion, both in stationary sources such as power plants or industrial plants in the production of process heat and in internal combustion engines in vehicles. The NO is oxidized in the atmosphere, usually rather slowly, or more rapidly if there is ozone present, to nitrogen dioxide, NO2. NO2 also reacts further with other constituents, forming nitrates, which is also in fine parhculate form. [Pg.37]

Nitric oxide combines readily with atmospheric oxygen at ambient temperature to produce brown fumes of pungent nitrogen dioxide, and in the presence of charcoal with chlorine to form nitrosyl chloride ... [Pg.298]

The advantages of thermal incineration are that it is simple in concept, has a wide application, and results in almost complete destruction of pollutants with no liquid or solid residue. Thermal incineration provides an opportunity for heat recovery and has low maintenance requirements and low capital cost. Thermal incineration units for small or moderate exhaust streams are generally compact and light. Such units can be installed on a roof when the plant area is limited. = The main disadvantage is the auxiliary fuel cost, which is partly offset with an efficient heat-recovery system. The formation of nitric oxides during the combustion processes must be reduced by control of excess air temperature, fuel supply, and combustion air distribution at the burner inlet, The formation of thermal NO increases dramatically above 980 Table 13.10)... [Pg.1256]

Nitric oxide is a colourless, monomeric, paramagnetic gas with a low mp and bp (Table 11.9). It is thermodynamically unstable and decomposes into its elements at elevated temperatures (1100-1200°C), a fact which militates against its direct synthesis from N2 and O2. At high pressures and moderate temperatures... [Pg.445]

As the equilibrium concentration of N2O2 decreases rapidly with increase in temperature the decrease in rate is explained. However alternative mechanisms have also been suggested. ° l Nitric oxide reacts with the halogens to give XNO (p. 441). Some other facile reactions are listed below ... [Pg.447]

The oxidation of nitric oxide, NO, is a reaction involved in smog production. It is moderately rapid at normal temperatures. The oxidation of methane, CHt (household gas), however, occurs so slowly at room temperature that we may say that, for all practical purposes it doesn t react at all. Again, the difference in the reaction rates must depend upon specific characteristics of the reactants, NO and CH,. [Pg.125]

Nitric oxide, NO, releases 13.5 kcal/mole when it reacts with oxygen to give nitrogen dioxide. Write the equation for this reaction and predict the effect of (i) raising the temperature, and of (ii) increasing the concentration of NO (at a fixed temperature) on ... [Pg.161]

A sophisticated quantitative analysis of experimental data was performed by Voltz et al. (96). Their experiment was performed over commercially available platinum catalysts on pellets and monoliths, with temperatures and gaseous compositions simulating exhaust gases. They found that carbon monoxide, propylene, and nitric oxide all exhibit strong poisoning effects on all kinetic rates. Their data can be fitted by equations of the form ... [Pg.91]

Nitrogen Dioxide (NO2) Is a major pollutant originating from natural and man-made sources. It has been estimated that a total of about 150 million tons of NOx are emitted to the atmosphere each year, of which about 50% results from man-made sources (21). In urban areas, man-made emissions dominate, producing elevated ambient levels. Worldwide, fossil-fuel combustion accounts for about 75% of man-made NOx emissions, which Is divided equally between stationary sources, such as power plants, and mobile sources. These high temperature combustion processes emit the primary pollutant nitric oxide (NO), which Is subsequently transformed to the secondary pollutant NO2 through photochemical oxidation. [Pg.174]

NO. Nitric oxide, or nitrogen monoxide, is a colorless gas at room temperature. As we have already seen, it is industrially produced by the oxidation of ammonia. However, with respect to the urban envirorunent, a more significant process is the high temperature reaction of N2 with O2 (as in a car engine) to produce NO. [Pg.323]

The application of the fluorescence derivatization technique in an HPLC method involves utilization of a post column reaction system (PCRS) as shown in Figure 3 to carry out the wet chemistry involved. The reaction is a 2-step process with oxidation of the toxins by periodate at pH 7.8 followed by acidification with nitric acid. Among the factors that influence toxin detection in the PCRS are periodate concentration, oxidation pH, oxidation temperature, reaction time, and final pH. By far, the most important of these factors is oxidation pH and, unfortunately, there is not one set of reaction conditions that is optimum for all of the PSP toxins. The reaction conditions outlined in Table I, while not optimized for any particular toxin, were developed to allow for adequate detection of all of the toxins involved. Care must be exercised in setting up an HPLC for the PSP toxins to duplicate the conditions as closely as possible to those specified in order to achieve consistent adequate detection limits. [Pg.70]

The brown nitrogen dioxide gas condenses to a yellow liquid which freezes to colourless crystals of dinifrogen tetroxide. Below 150°C the gas consists of molecules of dinifrogen tetroxide and nitrogen dioxide in equilibrium and the proportion of dinifrogen tetroxide increases as the temperature falls. Above 150°C nitrogen dioxide dissociates into nitric oxide and oxygen. [Pg.299]


See other pages where Nitric oxide temperature is mentioned: [Pg.314]    [Pg.35]    [Pg.458]    [Pg.459]    [Pg.459]    [Pg.461]    [Pg.461]    [Pg.42]    [Pg.42]    [Pg.44]    [Pg.498]    [Pg.459]    [Pg.118]    [Pg.437]    [Pg.161]    [Pg.374]    [Pg.31]    [Pg.507]    [Pg.274]    [Pg.69]    [Pg.72]    [Pg.419]    [Pg.104]    [Pg.71]    [Pg.329]    [Pg.68]    [Pg.128]    [Pg.31]    [Pg.378]    [Pg.168]    [Pg.633]   
See also in sourсe #XX -- [ Pg.203 ]




SEARCH



Nitric oxide catalysts, temperature

Nitric oxide electrochemical sensors temperature and pH effect

Nitric oxide, characteristic temperature

Temperature oxide

© 2024 chempedia.info