Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitric acid dioxide

Dilute acids have no effect on any form of carbon, and diamond is resistant to attack by concentrated acids at room temperature, but is oxidised by both concentrated sulphuric and concentrated nitric acid at about 500 K, when an additional oxidising agent is present. Carbon dioxide is produced and the acids are reduced to gaseous oxides ... [Pg.168]

Silicon, like carbon, is unaffected by dilute acids. Powdered silicon dissolves incompletely in concentrated nitric acid to give insoluble silicon dioxide, SiOj ... [Pg.169]

Lead dioxide is slightly soluble in concentrated nitric acid and concentrated sulphuric acid, and it dissolves in fused alkalis. It therefore has amphoteric properties, although these are not well characteri.sed since it is relatively inert. [Pg.194]

Nitrogen dioxide dissolves in water to give a mixture of nitrous and nitric acids ... [Pg.233]

If this reaction takes place in air, the evolved nitrogen monoxide is oxidised to the dioxide and this dissolves again as in equation (9.1) hence virtually complete conversion of nitrogen dioxide to nitric acid can occur (see nitric acid, below). With alkalis, a mixture of nitrite and nitrate is formed ... [Pg.233]

In liquid nitric acid, hydrogen bonding gives a loose structure similar to that of hydrogencarbonate ions. However, although pure nitric acid does not attack metals readily and does not evolve carbon dioxide from a carbonate, it is a conducting liquid, and undergoes auto-ionisation thus ... [Pg.240]

These elements are generally unaffected by non-oxidising acids (behaviour expected for non-metallic elements) but they do react when heated with concentrated sulphuric and nitric acids, both powerful oxidising agents. Sulphur is oxidised to sulphur dioxide by hot concentrated sulphuric acid,... [Pg.267]

Principle. A known weight of the substance is heated with fuming nitric acid and silver nitrate in a sealed tube. The organic material is thus oxidised to carbon dioxide and water, whilst the halogen is converted quantitatively into the corresponding silver halide. The latter js subsequently washed out of the tube, filtered and weighed. [Pg.416]

Procedure for Chlorine Estimation. Again cover the beaker using a teat-pipette inserted through the Up of the beaker, add concentrated nitric acid dropwise until the solution is acid, when carbon dioxide will be freely evolved. [Pg.507]

Selenium dioxide. The compound is conveniently prepared by the oxidation of selenium with nitric acid, followed by dehydration of the selenious acid thus formed by cautious heating ... [Pg.200]

Nitric acid, fuming Organic matter, nonmetals, most metals, ammonia, chlorosulfonic acid, chromium trioxide, cyanides, dichromates, hydrazines, hydrides, HCN, HI, hydrogen sulflde, sulfur dioxide, sulfur halides, sulfuric acid, flammable liquids and gases... [Pg.1210]

Phosphorus trichloride Acetic acid, aluminum, chromyl dichloride, dimethylsulfoxide, hydroxylamine, lead dioxide, nitric acid, nitrous acid, organic matter, potassium, sodium water... [Pg.1211]

Titanium Aluminum, boron trifluoride, carbon dioxide, CuO, halocarbons, halogens, PbO, nitric acid, potassium chlorate, potassium nitrate, potassium permanganate, steam at high temperatures, water... [Pg.1212]

Toluene Sulfuric plus nitric acids, nitrogen dioxide, silver perchlorate, uranium hexafluoride... [Pg.1212]

Sulfur Dioxide Processing, Repriuts of 1972—1974 Chem. Eng. Prog, articles, AIChE, New York (1975). Contaius thirteen papers on flue gas desulfurization, two on SO2 control iu pulp and paper, one on sulfuric acid tail gas, one on SO2 from ore roasting, and two on NO from nitric acid. [Pg.415]

In the commonly used Welland process, calcium cyanamide, made from calcium carbonate, is converted to cyanamide by reaction with carbon dioxide and water. Dicyandiamide is fused with ammonium nitrate to form guanidine nitrate. Dehydration with 96% sulfuric acid gives nitroguanidine which is precipitated by dilution. In the aqueous fusion process, calcium cyanamide is fused with ammonium nitrate ia the presence of some water. The calcium nitrate produced is removed by precipitation with ammonium carbonate or carbon dioxide. The filtrate contains the guanidine nitrate that is recovered by vacuum evaporation and converted to nitroguanidine. Both operations can be mn on a continuous basis (see Cyanamides). In the Marquerol and Loriette process, nitroguanidine is obtained directly ia about 90% yield from dicyandiamide by reaction with sulfuric acid to form guanidine sulfate followed by direct nitration with nitric acid (169—172). [Pg.16]

Lead nitrate [10099-74-8] Pb(N02)2, mol wt 331.23, sp gr 4.53, forms cubic or monoclinic colorless crystals. Above 205°C, oxygen and nitrogen dioxide are driven off, and basic lead nitrates are formed. Above 470°C, lead nitrate is decomposed to lead monoxide and Pb O. Lead nitrate is highly soluble in water (56.5 g/100 mL at 20°C 127 g/100 mL at 100°C), soluble in alkalies and ammonia, and fairly soluble in alcohol (8.77 g/100 mL of 43% aqueous ethanol at 22°C). Lead nitrate is readily obtained by dissolving metallic lead, lead monoxide, or lead carbonate in dilute nitric acid. Excess acid prevents the formation of basic nitrates, and the desired lead nitrate can be crystallized by evaporation. [Pg.70]

At ordinary temperatures, mercury is stable and does not react with air, ammonia (qv), carbon dioxide (qv), nitrous oxide, or oxygen (qv). It combines readily with the halogens and sulfur, but is Htde affected by hydrochloric acid, and is attacked only by concentrated sulfuric acid. Both dilute and concentrated nitric acid dissolve mercury, forming mercurous salts when the mercury is in excess or no heat is used, and mercuric salts when excess acid is present or heat is used. Mercury reacts with hydrogen sulfide in the air and thus should always be covered. [Pg.106]

Nickel sulfate also is made by the reaction of black nickel oxide and hot dilute sulfuric acid, or of dilute sulfuric acid and nickel carbonate. The reaction of nickel oxide and sulfuric acid has been studied and a reaction induction temperature of 49°C deterrnined (39). High purity nickel sulfate is made from the reaction of nickel carbonyl, sulfur dioxide, and oxygen in the gas phase at 100°C (40). Another method for the continuous manufacture of nickel sulfate is the gas-phase reaction of nickel carbonyl and nitric acid, recovering the soHd product in sulfuric acid, and continuously removing the soHd nickel sulfate from the acid mixture (41). In this last method, nickel carbonyl and sulfuric acid are fed into a closed-loop reactor. Nickel sulfate and carbon monoxide are produced the CO is thus recycled to form nickel carbonyl. [Pg.10]

In the examples, a nitro group is substituted for a hydrogen atom, and water is a by-product. Nitro groups may, however, be substituted for other atoms or groups of atoms. In Victor Meyer reactions which use silver nitrite, the nitro group replaces a hahde atom, eg, I or Br. In a modification of this method, sodium nitrite dissolved in dimethyl formamide or other suitable solvent is used instead of silver nitrite (1). Nitro compounds can also be produced by addition reactions, eg, the reaction of nitric acid or nitrogen dioxide with unsaturated compounds such as olefins or acetylenes. [Pg.32]

Reactions 8 and 9 are important steps for the Hquid-phase nitration of paraffins. The nitric oxide which is produced is oxidized with nitric acid to reform nitrogen dioxide, which continues the reaction. The process is compHcated by the presence of two Hquid phases consequentiy, the nitrogen oxides must transfer from one phase to another. A large interfacial area is needed between the two phases. [Pg.35]

The vapor-phase process of SocifitH Chemique de la Grande Paroisse for production of nitroparaffins employs propane, nitrogen dioxide, and air as feedstocks (34). The yields of nitroparaffins based on both propane and nitrogen dioxide are relatively high. Nitric oxide produced during nitration is oxidized to nitrogen dioxide, which is adsorbed in nitric acid. Next, the nitric dioxide is stripped from the acid and recirculated. [Pg.36]

NO Abatement. Source performance standards for nitric acid plants in the United States were introduced by the U.S. EPA in 1971 (55). These imposed a discharge limit of 1.5 kg of NO as equivalent nitrogen dioxide per 1000 kg of contained nitric acid, which corresponds to about 200—230... [Pg.43]

The only method utilized commercially is vapor-phase nitration of propane, although methane (70), ethane, and butane also can be nitrated quite readily. The data in Table 5 show the typical distribution of nitroparaffins obtained from the nitration of propane with nitric acid at different temperatures (71). Nitrogen dioxide can be used for nitration, but its low boiling point (21°C) limits its effectiveness, except at increased pressure. Nitrogen pentoxide is a powerful nitrating agent for alkanes however, it is expensive and often gives polynitrated products. [Pg.101]


See other pages where Nitric acid dioxide is mentioned: [Pg.283]    [Pg.278]    [Pg.279]    [Pg.238]    [Pg.239]    [Pg.239]    [Pg.240]    [Pg.241]    [Pg.409]    [Pg.200]    [Pg.200]    [Pg.741]    [Pg.1042]    [Pg.208]    [Pg.485]    [Pg.231]    [Pg.361]    [Pg.69]    [Pg.71]    [Pg.501]    [Pg.38]    [Pg.38]    [Pg.39]    [Pg.41]    [Pg.43]    [Pg.44]    [Pg.44]   
See also in sourсe #XX -- [ Pg.357 ]




SEARCH



Nitric acid and sulphuric dioxide

Nitric acid from nitrogen dioxide

Nitric acid nitrogen dioxide oxidation

Nitric acid synthesis from nitrogen dioxide

Nitric acid, dimerization reactions with nitrogen dioxide

Nitric acid, tropospheric dioxide

Nitrogen dioxide, to nitric acid

© 2024 chempedia.info