Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrations arenes

Substitution reactions at aromatic carbon (see also Reduction reactions, Ullmann ether coupling, specific reactions such as Nitration) Arene(tricarbonyl)chromium complexes, 19... [Pg.375]

Nitration of arenes. Using YbfOTfjj it is possible to nitrate arenes with 69%... [Pg.432]

Results of preparative nitration arenes, haloarenes, and nitroarenes are summarized in Tables XV XVII. Since HF and BF3 are the only by-products of the reaction, nitration with nitronium salts can be carried out under anhydrous conditions. This is advantageous in nitration of aromatics containing functional groups sensitive to hydrolysis. Thus aromatic nitriles, acid halides, and esters can be nitrated in high yield without difficulty (Tables XVIII-XIX). [Pg.161]

A polymer-bound analog of the p-sulfonato-calix[6]arenes is described in a Shinkai patent [31,32], which states that the hexakis(carbetoxymethyl)ether of p-sulfonatocalix[6]arene was partially nitrated, ami-nated, and fixed on crosslinked chloromethylated polystyrene. This resin is stated to absorb 108 ixg of uranium... [Pg.342]

The diazonio group can also be replaced by —OH to yield a phenol and by —H to yield an arene. A phenol is prepared by reaction of the arenediazonium salt with copper(I) oxide in an aqueous solution of copper(ll) nitrate, a reaction that is especially useful because few other general methods exist for introducing an -OH group onto an aromatic ring. [Pg.942]

Nitration of aromatic rings by nitronium tetrafluoroborate is a general method. Fifty-seven arenes, haloarenes, nitroarenes,... [Pg.60]

Some time ago Tedder (1957) recommended a process which he called direct introduction of the diazonium group , because it replaces the steps of nitration, reduction, and diazotization of an aromatic compound by a one-pot operation with three equivalents of a nitrosating reagent in acidic solution. The first step (Scheme 2-35) is a C-nitrosation and the following steps (Scheme 2-36) are the reduction of the nitroso-arene. [Pg.36]

The ferrocene moiety is not just an innocent steric element to create a three-dimensional chiral catalyst environment. Instead, the Fe center can influence a catalytic asymmetric process by electronic interaction with the catalytic site, if the latter is directly coimected to the sandwich core. This interaction is often comparable to the stabilization of a-ferrocenylcarbocations 3 (see Sect. 1) making use of the electron-donating character of the Cp2Fe moiety, but can also be reversed by the formation of feirocenium systems thereby increasing the acidity of a directly attached Lewis acid. Alternative applications in asymmetric catalysis, for which the interaction of the Fe center and the catalytic center is less distinct, have recently been summarized in excellent extensive reviews and are outside the scope of this chapter [48, 49], Moreover, related complexes in which one Cp ring has been replaced with an ri -arene ligand, and which have, for example, been utilized as catalysts for nitrate or nitrite reduction in water [50], are not covered in this chapter. [Pg.152]

Considerable attention has been directed to the formation of nitroarenes that may be formed by several mechanisms (a) initial reaction with hydroxyl radicals followed by reactions with nitrate radicals or NO2 and (b) direct reaction with nitrate radicals. The first is important for arenes in the troposphere, whereas the second is a thermal reaction that occurs during combustion of arenes. The kinetics of formation of nitroarenes by gas-phase reaction with N2O5 has been examined for naphthalene (Pitts et al. 1985a) and methylnaphthalenes (Zielinska et al. 1989) biphenyl (Atkinson et al. 1987b,c) acephenanthrylene (Zielinska et al. 1988) and for adsorbed pyrene (Pitts et al. 1985b). Both... [Pg.20]

Arene oxides can be intermediates in the bacterial transformation of aromatic compounds and initiate rearrangements (NIH shifts) (Dalton et al. 1981 Cerniglia et al. 1984 Adriaens 1994). The formation of arene oxides may plausibly provide one mechanism for the formation of nitro-substituted products during degradation of aromatic compounds when nitrate is present in the medium. This is discussed in Chapter 2. [Pg.107]

A rearrangement (NIH shift) occurred during the transformation of 2-chlorobiphenyl to 2-hydroxy-3-chlorobiphenyl by a methanotroph, and is consistent with the formation of an intermediate arene oxide (Adriaens 1994). The occurrence of such intermediates also offers plausible mechanisms for the formation of nitro-containing metabolites that have been observed in the degradation of 4-chlo-robiphenyl in the presence of nitrate (Sylvestre et al. 1982). [Pg.464]

The silver(I) complexes with the tetrakis(methylthio)tetrathiafulvalene ligand have been reported, the nitrate salt presents a 3D structure with an unprecedented 4.16-net porous inorganic layer of silver nitrate,1160 the triflate salt presents a two interwoven polymeric chain structure.1161 The latter behaves as a semiconductor when doped with iodine. With a similar ligand, 2,5-bis-(5,5,-bis(methylthio)-l,3,-dithiol-2 -ylidene)-l,3,4,6-tetrathiapentalene, a 3D supramolecular network is constructed via coordination bonds and S"-S contacts. The iodine-doped compound is highly conductive.1162 (Methylthio)methyl-substituted calix[4]arenes have been used as silver-selective chemically modified field effect transistors and as potential extractants for Ag1.1163,1164... [Pg.972]

Regnouf-de-Vains, J. B. Dalbavie, J. O. Lamartine, R. Fenet, B. Quantitative solvent extraction from neutral aqueous nitrate media of silver(I) against lead(II) with a new calix-4-arene-based bipyridine podand. Tetrahedron Lett. 2001, 42, 2681-2684. [Pg.807]

The formation of the Wheland intermediate from the ion-radical pair as the critical reactive intermediate is common in both nitration and nitrosation processes. However, the contrasting reactivity trend in various nitrosation reactions with NO + (as well as the observation of substantial kinetic deuterium isotope effects) is ascribed to a rate-limiting deprotonation of the reversibly formed Wheland intermediate. In the case of aromatic nitration with NO, deprotonation is fast and occurs with no kinetic (deuterium) isotope effect. However, the nitrosoarenes (unlike their nitro counterparts) are excellent electron donors as judged by their low oxidation potentials as compared to parent arene.246 As a result, nitrosoarenes are also much better Bronsted bases249 than the corresponding nitro derivatives, and this marked distinction readily accounts for the large differentiation in the deprotonation rates of their respective conjugate acids (i.e., Wheland intermediates). [Pg.292]

Finally, we ask, if the reactive triads in Schemes 1 and 19 are common to both electrophilic and charge-transfer nitration, why is the nucleophilic pathway (k 2) apparently not pertinent to the electrophilic activation of toluene and anisole One obvious answer is that the electrophilic nitration of these less reactive [class (ii)] arenes proceeds via a different mechanism, in which N02 is directly transferred from V-nitropyridinium ion in a single step, without the intermediacy of the reactive triad, since such an activation process relates to the more conventional view of electrophilic aromatic substitution. However, the concerted mechanism for toluene, anisole, mesitylene, t-butylbenzene, etc., does not readily accommodate the three unique facets that relate charge-transfer directly to electrophilic nitration, viz., the lutidine syndrome, the added N02 effect, and the TFA neutralization (of Py). Accordingly, let us return to Schemes 10 and 19, and inquire into the nature of thermal (adiabatic) electron transfer in (87) vis-a-vis the (vertical) charge-transfer in (62). [Pg.261]

In the nitration of arenes with N2C>4, the red-coloured transient arises from the metastable precursor complex [ArH, NO+]NC>3 which is formed in the prior... [Pg.790]

This section also includes nitrated monocyclic arenes with halogen atoms directly attached to the benzene ring. [Pg.1127]


See other pages where Nitrations arenes is mentioned: [Pg.309]    [Pg.27]    [Pg.118]    [Pg.309]    [Pg.27]    [Pg.118]    [Pg.510]    [Pg.927]    [Pg.636]    [Pg.510]    [Pg.927]    [Pg.188]    [Pg.348]    [Pg.1083]    [Pg.20]    [Pg.57]    [Pg.1083]    [Pg.957]    [Pg.206]    [Pg.297]    [Pg.198]    [Pg.224]    [Pg.240]    [Pg.240]    [Pg.241]    [Pg.244]    [Pg.260]    [Pg.261]    [Pg.790]    [Pg.969]   


SEARCH



Acyl nitrates, with arenes

Arene nitration

Arenes aromatic nitration

Arenes cerium ammonium nitrate

Arenes nitration

Arenes nitration

Calix arenes nitration

Nitration of arenes

Nitric acid nitration of arenes

Sulfuric acid nitration of arenes

© 2024 chempedia.info