Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Niobium complexes properties

Niobium, tris(diethyldilhiocarbamato)oxy-stereochemistry, 1,82 structure, 1, 83 Niobium, tris(oxa ato)oxy-stereochcmistry, 1, 82 Niobium, tris(phcnylcncdirhio)-structure, 1, 63 Niobium alanate, 3, 685 Niobium complexes alkyl alkoxy reactions, 2, 358 amides, 2,164 properties, 2, 168 synthesis, 2, 165 applications, 6,1014 carbamicacid, 2, 450 clusters, 3, 672,673,675 hexamethylbenzene ligands, 3, 669 cyanides synthesis, 2, 9 p-dinitrogen, 3, 418 fluoro... [Pg.177]

From the above discussion it follows that tetravalent and hexavalent thorium, uranium, and plutonium can be separated from the trivalent rare-earth fission products by taking advantage of differences in complexing properties. More highly charged cation fission products, such as tetravalent cerium and the fifth-period transition elements zirconium, niobium, molybdenum, technetium, and ruthenium, complex more easily than the trivalent rare-earths and are more difficult to separate from uranium and plutonium by processes involving complex formation. [Pg.412]

Niobic Acid. Niobic acid, Nb20 XH2O, includes all hydrated forms of niobium pentoxide, where the degree of hydration depends on the method of preparation, age, etc. It is a white insoluble precipitate formed by acid hydrolysis of niobates that are prepared by alkaH pyrosulfate, carbonate, or hydroxide fusion base hydrolysis of niobium fluoride solutions or aqueous hydrolysis of chlorides or bromides. When it is formed in the presence of tannin, a volurninous red complex forms. Freshly precipitated niobic acid usually is coUoidal and is peptized by water washing, thus it is difficult to free from traces of electrolyte. Its properties vary with age and reactivity is noticeably diminished on standing for even a few days. It is soluble in concentrated hydrochloric and sulfuric acids but is reprecipitated on dilution and boiling and can be complexed when it is freshly made with oxaHc or tartaric acid. It is soluble in hydrofluoric acid of any concentration. [Pg.28]

Loop Tests Loop test installations vary widely in size and complexity, but they may be divided into two major categories (c) thermal-convection loops and (b) forced-convection loops. In both types, the liquid medium flows through a continuous loop or harp mounted vertically, one leg being heated whilst the other is cooled to maintain a constant temperature across the system. In the former type, flow is induced by thermal convection, and the flow rate is dependent on the relative heights of the heated and cooled sections, on the temperature gradient and on the physical properties of the liquid. The principle of the thermal convective loop is illustrated in Fig. 19.26. This method was used by De Van and Sessions to study mass transfer of niobium-based alloys in flowing lithium, and by De Van and Jansen to determine the transport rates of nitrogen and carbon between vanadium alloys and stainless steels in liquid sodium. [Pg.1062]

Tantalum and niobium are added, in the form of carbides, to cemented carbide compositions used in the production of cutting tools. Pure oxides are widely used in the optical industiy as additives and deposits, and in organic synthesis processes as catalysts and promoters [12, 13]. Binary and more complex oxide compounds based on tantalum and niobium form a huge family of ferroelectric materials that have high Curie temperatures, high dielectric permittivity, and piezoelectric, pyroelectric and non-linear optical properties [14-17]. Compounds of this class are used in the production of energy transformers, quantum electronics, piezoelectrics, acoustics, and so on. Two of... [Pg.1]

Since niobates and tantalates belong to the octahedral ferroelectric family, fluorine-oxygen substitution has a particular importance in managing ferroelectric properties. Thus, the variation in the Curie temperature of such compounds with the fluorine-oxygen substitution rate depends strongly on the crystalline network, the ferroelectric type and the mutual orientation of the spontaneous polarization vector, metal displacement direction and covalent bond orientation [47]. Hence, complex tantalum and niobium fluoride compounds seem to have potential also as new materials for modem electronic and optical applications. [Pg.9]

The most common property of molten systems containing tantalum or niobium is the ionic equilibrium between hexa- and heptacoordinated complexes, with the general compositions MeFg and MeF6X(n+I) ... [Pg.191]

Nevertheless, the system, composed of chain fragments of oxyfluoroniobate complexes, is thermodynamically less stable. Dipole properties of fragments of a certain length are re-orientated so as to be linked into typical infinite chains. There is no doubt that the fragment re-orientation and linking process initiates the partial reduction of niobium to Nb4+ and the oxidation of fluoride to elementary fluorine. The process scheme can be presented as follows ... [Pg.213]

Heckley and coworkers reported the reaction of TaClj and Na(Et2C fc) to give complexes analogous to those obtained in the niobium reactions 16,17). The properties of Ta(Et2[Pg.90]

The predominant oxidation stale of the element is (V). There is some evidence that the (IV) state is obtained under certain reduction conditions. When the pentapositive form is not in the form of a complex ion it may exist in solution as PaC>2+. The compounds are very readily hydrolyzed in aqueous solution yielding aggregates of colloidal dimensions, thus showing marked similarity to niobium and tantalum in this respect. These properties play a dominant role in the chemical properties of aqueous solution, because the element is so easily removed from solution by hydrolysis and adsorption Protactinium coprecipilates with a wide variety of substances, and it seems likely that the explanation for this lies in the hydrolytic and adsorptive behavior. [Pg.1370]

The chemistry of hydrido complexes of group V metals seems to reflect the usual tendency for vanadium to behave differently from the other two elements, although generalizations are probably premature in such a new field. Certainly niobium and tantalum form numerous hydrides of similar composition and properties, appearing to have no vanadium counterparts to date, but there have been no systematic investigations involving all three elements under comparable conditions, as is clear from the following discussions. [Pg.305]


See other pages where Niobium complexes properties is mentioned: [Pg.1088]    [Pg.267]    [Pg.423]    [Pg.1734]    [Pg.314]    [Pg.245]    [Pg.251]    [Pg.743]    [Pg.76]    [Pg.340]    [Pg.340]    [Pg.178]    [Pg.341]    [Pg.77]    [Pg.213]    [Pg.215]    [Pg.19]    [Pg.23]    [Pg.53]    [Pg.159]    [Pg.3]    [Pg.713]    [Pg.44]    [Pg.318]    [Pg.322]    [Pg.90]    [Pg.86]    [Pg.76]    [Pg.340]    [Pg.340]    [Pg.108]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.168 , Pg.602 ]




SEARCH



Complexes, 14 properties

Complexing properties

Niobium complexes

Niobium properties

© 2024 chempedia.info