Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nicotinamide adenine diphosphate phosphate

NADPH nicotinamide adenine diphosphate phosphate reduced... [Pg.974]

Abbreviations NADPH, b-nicotinamide adenine dinucleotide phosphate reduced from 5 -phosphosulfate UDPGA, uridine diphosphate-glucuronic acid. [Pg.447]

FIGURE 1.4 Proposed biosynthetic route for the biosynthesis of (A) squalene oxide (squalene-2,3-oxide) via the isoprenoid pathway and (B) triterpene saponins of the dammarane-type and oleanane-type from squalene oxide. PP, diphosphate group GPS, geranyl phosphate synthase FPS, farnesyl phosphate synthase NADPH, nicotinamide adenine dinucleotide phosphate. [Pg.40]

FIGURE 21. Photosystem I (PS I). P700, special pair Q, plastoquinone QH2, dihy-droplastoquinone NADP, nicotinamide adenine dinucleotide phosphate FQR, ferre-doxin-quinone reductase FNR, ferredoxin-NADP reductase Fd, ferredoxin ADP, adenosine diphosphate ATP, adenosine triphosphate. [Pg.32]

Fig. 26. Z-Scheme of photosynthesis in plants. Chi is chlorophyll, cyt b, f is cytochrome b, / PC is plastocyanine, (Fe-S) is iron sulfer protein. ATP is adenosine triphosphate ADP is adenosine diphosphate Pj is the phosphate ion and NADP is the nicotinamide adenine dinucleotide phosphate ion [203]... Fig. 26. Z-Scheme of photosynthesis in plants. Chi is chlorophyll, cyt b, f is cytochrome b, / PC is plastocyanine, (Fe-S) is iron sulfer protein. ATP is adenosine triphosphate ADP is adenosine diphosphate Pj is the phosphate ion and NADP is the nicotinamide adenine dinucleotide phosphate ion [203]...
Fig. 2.1. Examples from The Energy Hall of Fame. These molecules not only deliver energy, but transfer special groups in the process. Acyl, RCO— ADP, adenosine diphosphate ATP, adenosine triphosphate dUMP deoxyuridine monophosphate FAD, flavin adenine dinucleotide GTP, guanosine triphosphate NADH, nicotinamide adenine dinucleotide NADP, nicotinamide adenine dinucleotide phosphate P, phosphate TMP, thymidine monophosphate UDP, uridine diphosphate UTP, uridine triphosphate. Fig. 2.1. Examples from The Energy Hall of Fame. These molecules not only deliver energy, but transfer special groups in the process. Acyl, RCO— ADP, adenosine diphosphate ATP, adenosine triphosphate dUMP deoxyuridine monophosphate FAD, flavin adenine dinucleotide GTP, guanosine triphosphate NADH, nicotinamide adenine dinucleotide NADP, nicotinamide adenine dinucleotide phosphate P, phosphate TMP, thymidine monophosphate UDP, uridine diphosphate UTP, uridine triphosphate.
The following enzymes and coenzymes are abbreviated HLADH, horse liver alcohol dehydrogenase YADH, yeast alcohol dehydrogenase PTADH, Pseudomonas testosteronii alcohol dehydrogenase NAD(P) and NAD(P)H, oxidized and reduced forms of nicotinamide adenine diphosphate (or its phosphate) respectively BY, baker s yeast TBADH, Thermoanaerohium hrockii alcohol dehydrogenase ... [Pg.183]

Photosynthesis comprises a light-induced and a dark reaction. The first, called photophosphorylation, involves the two-electron reduction of nicotinamide adenine dinucleotide phosphate (NADP+) by water, to produce NADPH and oxygen. The redox reaction is coupled to the generation of adenosine triphosphate (ATP) from adenosine diphosphate (ADP) ... [Pg.3768]

Fig. 6.2.1. Regulation of assimilatory sulfate metabolism in Saccharomyces cerevisiae. (Cherest et al., 1969 Siegel, 1975 de Vito and Dreyfuss, 1964). Abbreviations as follows ADP adenosine 5 -diphosphate AMP adenosine 5 -phosphate (adenylic acid) APS adenylyl sulphate ATP adenosine 5 -triphosphate NADP, NADPH nicotinamide-adenine dinucleotide phosphate (oxidised and reduced) PAP adenosine 3, 5 -diphos-phate PAPS 3 -phosphoadenylyl sulphate Pj orthophosphate ion PPj pyrophosphate ion. Fig. 6.2.1. Regulation of assimilatory sulfate metabolism in Saccharomyces cerevisiae. (Cherest et al., 1969 Siegel, 1975 de Vito and Dreyfuss, 1964). Abbreviations as follows ADP adenosine 5 -diphosphate AMP adenosine 5 -phosphate (adenylic acid) APS adenylyl sulphate ATP adenosine 5 -triphosphate NADP, NADPH nicotinamide-adenine dinucleotide phosphate (oxidised and reduced) PAP adenosine 3, 5 -diphos-phate PAPS 3 -phosphoadenylyl sulphate Pj orthophosphate ion PPj pyrophosphate ion.
Figure 21 -8 Major glycolytic pathways of the erythrocyte. Substrates are in uppercase type, and enzymes are in parentheses. EMP, The Embden-Meyerhof pathway HMP hexose monophosphate pathway or pentose shunt RLC, the Rapoport-Luebering cycle ADP, adenosine diphosphate ATP, adenosine triphosphate NAD, nicotinamide-adenine dinudeotide NADH, reduced nicotinamide-adenine dinucleotide NADP, nicotinamide-adenine dinucleotide phosphate NADPH, reduced nicotinamide-adenine dinucleotide phosphate.The step from ribulose-5-phosphate, which is shown as being catalyzed by transketolase and transaldolase, is an abbreviation of this portion of the HMR... Figure 21 -8 Major glycolytic pathways of the erythrocyte. Substrates are in uppercase type, and enzymes are in parentheses. EMP, The Embden-Meyerhof pathway HMP hexose monophosphate pathway or pentose shunt RLC, the Rapoport-Luebering cycle ADP, adenosine diphosphate ATP, adenosine triphosphate NAD, nicotinamide-adenine dinudeotide NADH, reduced nicotinamide-adenine dinucleotide NADP, nicotinamide-adenine dinucleotide phosphate NADPH, reduced nicotinamide-adenine dinucleotide phosphate.The step from ribulose-5-phosphate, which is shown as being catalyzed by transketolase and transaldolase, is an abbreviation of this portion of the HMR...
Scheme 22 The whole biosynthetic pathway of sugar nucleotides. ATP, adenosine triphosphate Gal-1 -P, galactose-1-phosphate UTP, uridine triphosphate UDP, uridine diphosphate NAD, nicotinamide adenine dinucleotide Fru, fructose AcCoA, acetyl coenzyme-A PEP, phosphoenolpyruvate CTP, cytidine triphosphate NADP, nicotinamide adenine dinucieotide phosphate GTP, guanosine triphosphate. Scheme 22 The whole biosynthetic pathway of sugar nucleotides. ATP, adenosine triphosphate Gal-1 -P, galactose-1-phosphate UTP, uridine triphosphate UDP, uridine diphosphate NAD, nicotinamide adenine dinucleotide Fru, fructose AcCoA, acetyl coenzyme-A PEP, phosphoenolpyruvate CTP, cytidine triphosphate NADP, nicotinamide adenine dinucieotide phosphate GTP, guanosine triphosphate.
Figure 2. Cycles of life and death. A brief overview showing how paraquat (and similarly diquat) interacts with two of the most fundamental processes of life photosynthesis in the chloroplast and respiration in the mitochondrion. Abbreviations ADP, adenosine diphosphate ATP, adenosine triphosphate e, electron proton NAD and NADH, oxidised and reduced forms of nicotinamide adenine dinucleotide NADP and NADPH, oxidised and reduced forms of nicotinamide adenine dinucleotide phosphate Paraquat, paraquat radical Pi, inorganic phosphate superoxide radical. Figure 2. Cycles of life and death. A brief overview showing how paraquat (and similarly diquat) interacts with two of the most fundamental processes of life photosynthesis in the chloroplast and respiration in the mitochondrion. Abbreviations ADP, adenosine diphosphate ATP, adenosine triphosphate e, electron proton NAD and NADH, oxidised and reduced forms of nicotinamide adenine dinucleotide NADP and NADPH, oxidised and reduced forms of nicotinamide adenine dinucleotide phosphate Paraquat, paraquat radical Pi, inorganic phosphate superoxide radical.
Irradiation of water leads to formation of (HO) . By contrast, in the brain, strong water-soluble electron donors (DH) such as nicotinamide adenine dinucleotide phosphate (NADPH), catechin, hydroquinone, ascorbic acid or glutathione (L-y-glutamyl-L-cysteinyl-glycine GSH) can promote formation of (HO) from H2O2 in the presence of Cu+ or some iron complexes (e.g. Fe -adenosine diphosphate complexes) according to Eqs. (15) and (16) (Florence, 1984 Kadiiska et al., 1992). [Pg.441]

Abbreviations used NAD+ = nicotinamide adenine dinucleotide NADH e reduced nicotinamide adenine dinucleotide NADP = nicotinamide adenine dinudeotide phosphate NAD PH reduced nicotinamide adenine dinucleotide phosphate NMN, NMN+ nicotinamide mononucleotide NMNH2 = reduced nicotinamide mononucleotide a-NAD a-nicotinamide adenine dinucleotide AMP = 5 -adenylic acid 3,5 -AMP adenosine 3, 5 -cycIic phosphate 3 ,5 -UMP = uridine 3, 5 -cyclic phosphate 3, 5 -CMP cytidine 3, 5-cyclic phosphate 3 f5 GMP = guanosine 3 5f-cyclic phosphate 3, 5 TMP thymidine 3, 5 -cyclic phosphate Dibutyryl-3, 5 -AMP = N6,02-dibutyryladenosine 3, 5 -cyclic phosphate 2, 3 -UMP = uridine 2 ,3 -cyclic monophosphate 2, 3 -CMP cytidine 2, 3 -cyclic monophosphate 2, 3 -AMP = adenosine 2, 3 -cyclic monophosphate 2 ,3 -GMP = guanosine 2 3 -cyclic monophosphate 2 -UMP = uridine 2 -phosphate -UMP uridine -phosphate 5 -UMP = uridine 5 phosphate Poly U polyuridylic acid ADP = adenosine 5 -diphosphate FAD = flavin adenine dinucleotide UpA, UpU, ApU and ApA x dinucleoside phosphates of uridine and/or adenine. c See original references for experimental conditions and additional data. [Pg.337]

Reduction with isolated enzymes avoids difficulties associated with diffusion limitations and also avoids the presence of many different enzymes, present in the whole cell, which can cause side reactions or reduced enantioselectivity. The main drawback, however, is the instability of the isolated enzyme and the requirement for added co-factor NAD(H) or NADP(H), which are the oxidized (or reduced) forms of nicotinamide adenine diphosphate or its 2 -phosphate derivative. These co-factors are expensive, but can be used as catalysts in the presence of a co-reductant such as formate ion HCOO or an alcohol (e.g. isopropanol or ethanol). The reduction of ketones occurs by transfer of hydride from the C-4 position of the dihydropyridine ring of NADH or NADPH (7.105). Only one of the two hydrogen atoms is transferred and this process occurs within the active site of the enzyme to promote asymmetric reduction. [Pg.456]

Adenosine 5 -(trihydrogen diphosphate)-2 (dihydrogen phosphate) (S r5 ) ester with 3-( amino carbonyl)-l-(S-D-ribofuranosyl-pyridinium hydroxide inner salt, 9CI. Nicotinamide adenine dinucleotide phosphate. Codehydrase II. Codehydrogenase II. Na-difosfate. Phosphocozymase. Triphospho-pyridine nucleotide. NADP. TPN. NADP [53-59-8]... [Pg.258]

Whereas catabolism involves oxidation of starting molecnles, biosynthesis or anabolism involves reduction reactions, hence the need for a reducing agent or hydrogen donor, which is usually NADP (nicotinamide adenine dinucleotide phosphate). These catalysts are known as coenzymes and the most widely occurring is coenzyme A (CoA), made up of ADP (adenosine diphosphate) and pantetheine phosphate. [Pg.4]

The coenzymes nicotinamide-adenine dinucleotide (NAD) and nicotinamide - adenine dinucleotide phosphate (NADP), their reduced forms, and adenosine 5 -monophosphate (5 -AMP) and adenosine 2, 5 -diphosphate (2. 5 -ADP) represent well-known examples of this class. They can be considered for the purification of ca. 25 % of the known enzymes (especially dehydrogenases). [Pg.320]

The direct reduction of glutamate 5-phosphate (Scheme 12.3) with the nicotinamide adenine diphosphate (NADPH)/NADP+-dependent glutamate-5-semialde-hyde dehydrogenase (EC 1.2.1.41) as shown in Scheme 12.5 produces glutamate 5-semialdehyde. The aldehyde spontaneously undergoes cyclization to (5)-3,4-dihydro-2//-pyrrole-2-carboxylate, which is then reduced to L-proline (Pro, P).The reduction is accomplished again with the phosphorylated nicotinamide adenine dinucleotide being oxidized while in the presence of the enzyme pyrroline-5-car-boxylate reductase (EC 1.5.1.2). [Pg.1135]

Chu,D.K., Bassham,J.A. Activation of ribulose-1,5-diphosphate carboxylase by nicotinamide adenine dinucleotide phosphate and other chloroplast metabolites. Plant Physiol. 54, 556-559 (1974)... [Pg.181]


See other pages where Nicotinamide adenine diphosphate phosphate is mentioned: [Pg.40]    [Pg.3]    [Pg.169]    [Pg.197]    [Pg.80]    [Pg.283]    [Pg.1297]    [Pg.274]    [Pg.335]    [Pg.396]    [Pg.171]    [Pg.538]    [Pg.405]    [Pg.122]    [Pg.54]    [Pg.405]    [Pg.66]    [Pg.325]    [Pg.610]    [Pg.438]    [Pg.1003]    [Pg.405]    [Pg.515]    [Pg.44]    [Pg.59]    [Pg.43]    [Pg.548]   


SEARCH



Nicotinamide adenine

Nicotinamide adenine diphosphate phosphate reduced

Nicotinamide diphosphate

© 2024 chempedia.info