Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel special

Nickel Special-purpose heat exchangers, caustic handling... [Pg.6]

In the high silicon austenitic chromium-nickel special steel XI CrNiSi 18 15, which has high resistance to concentrated nitric acid, susceptibility to intergranular corrosion depends on the separation of a carbide and on a 3t-phase of type M (C,N)2, containing chromium, nickel, silicon,... [Pg.558]

Raney nickel A special form of nickel prepared by treating an Al-Ni alloy with NaOH solution. The nickel is left in a spongy mass which is pyrophoric when dry. This form of nickel is a most powerful catalyst, especially for hydrogenations. [Pg.341]

Fluorine cannot be prepared directly by chemical methods. It is prepared in the laboratory and on an industrial scale by electrolysis. Two methods are employed (a) using fused potassium hydrogen-fluoride, KHFj, ill a cell heated electrically to 520-570 K or (b) using fused electrolyte, of composition KF HF = 1 2, in a cell at 340-370 K which can be electrically or steam heated. Moissan, who first isolated fluorine in 1886, used a method very similar to (b) and it is this process which is commonly used in the laboratory and on an industrial scale today. There have been many cell designs but the cell is usually made from steel, or a copper-nickel alloy ( Monel metal). Steel or copper cathodes and specially made amorphous carbon anodes (to minimise attack by fluorine) are used. Hydrogen is formed at the cathode and fluorine at the anode, and the hydrogen fluoride content of the fused electrolyte is maintained by passing in... [Pg.316]

Common catalyst compositions contain oxides or ionic forms of platinum, nickel, copper, cobalt, or palladium which are often present as mixtures of more than one metal. Metal hydrides, such as lithium aluminum hydride [16853-85-3] or sodium borohydride [16940-66-2] can also be used to reduce aldehydes. Depending on additional functionahties that may be present in the aldehyde molecule, specialized reducing reagents such as trimethoxyalurninum hydride or alkylboranes (less reactive and more selective) may be used. Other less industrially significant reduction procedures such as the Clemmensen reduction or the modified Wolff-Kishner reduction exist as well. [Pg.470]

Disposal of spent hydrogenation catalyst requires a special chemical waste landfill because of its nickel content and the fact that oil-soaked catalysts tend to be pyrophoric. Compared to disposal costs, reprocessing to recover the nickel may become economically viable. [Pg.126]

Fluorocarbons are made commercially also by the electrolysis of hydrocarbons in anhydrous hydrogen fluoride (Simons process) (14). Nickel anodes and nickel or steel cathodes are used. Special porous anodes improve the yields. This method is limited to starting materials that are appreciably soluble in hydrogen fluoride, and is most useflil for manufacturing perfluoroalkyl carboxyflc and sulfonic acids, and tertiary amines. For volatile materials with tittle solubility in hydrofluoric acid, a complementary method that uses porous carbon anodes and HF 2KF electrolyte (Phillips process) is useflil (14). [Pg.283]

Pre-Keformer A pre-reformer is based on the concept of shifting reforming duty away from the direct-fired reformer, thereby reducing the duty of the latter. The pre-reformer usually occurs at about 500°C inlet over an adiabatic fixed bed of special reforming catalyst, such as sulfated nickel, and uses heat recovered from the convection section of the reformer. The process may be attractive in case of plant retrofits to increase reforming capacity or in cases where the feedsock contains heavier components. [Pg.421]

Eabrication techniques must take into account the metallurgical properties of the metals to be joined and the possibiUty of undesirable diffusion at the interface during hot forming, heat treating, and welding. Compatible alloys, ie, those that do not form intermetaUic compounds upon alloying, eg, nickel and nickel alloys (qv), copper and copper alloys (qv), and stainless steel alloys clad to steel, may be treated by the traditional techniques developed for clads produced by other processes. On the other hand, incompatible combinations, eg, titanium, zirconium, or aluminum to steel, require special techniques designed to limit the production at the interface of undesirable intermetaUics which would jeopardize bond ductihty. [Pg.148]

Tungsten with the addition of as much as 5% thoria is used for thermionic emission cathode wires and as filaments for vibration-resistant incandescent lamps. Tungsten—rhenium alloys are employed as heating elements and thermocouples. Tantalum and niobium form continuous soHd solutions with tungsten. Iron and nickel are used as ahoy agents for specialized appHcations. [Pg.191]

The vapor-phase conversion of aniline to DPA over a soHd catalyst has been extensively studied (18,22). In general, the catalyst used is pure aluminum oxide or titanium oxide, prepared under special conditions (18). Promoters, such as copper chromite, nickel chloride, phosphoric acid, and ammonium fluoride, have also been recommended. Reaction temperatures are usually from 400 to 500°C. Coke formed on the catalyst is removed occasionally by burning. In this way, conversions of about 35% and yields of 95% have been reported. Carba2ole is frequently a by-product. [Pg.244]

Equipment Materials and Abrasion Resistance. Stainless steel, especially Type 316, is the constmction material of choice and can resist a variety of corrosive conditions and temperatures. Carbon steels are occasionally used. Rusting may, however, cause time-consuming maintenance and can damage mating locating surfaces, which increases the vibration and noise level. Titanium, HasteUoy, or high nickel alloys are used in special instances, at a considerable increase in capital cost. [Pg.405]

The determination of tin in metals containing over 75 wt % tin (eg, ingot tin) requites a special procedure (17). A 5-g sample is dissolved in hydrochloric acid, reduced with nickel, and cooled in CO2. A calculated weight of pure potassium iodate (dried at 100°C) and an excess of potassium iodide (1 3) are dissolved in water and added to the reduced solution to oxidize 96—98 wt % of the stannous chloride present. The reaction is completed by titration with 0.1 Af KIO —KI solution to a blue color using starch as the indicator. [Pg.60]


See other pages where Nickel special is mentioned: [Pg.273]    [Pg.322]    [Pg.870]    [Pg.191]    [Pg.101]    [Pg.80]    [Pg.347]    [Pg.238]    [Pg.515]    [Pg.277]    [Pg.379]    [Pg.384]    [Pg.421]    [Pg.227]    [Pg.335]    [Pg.496]    [Pg.520]    [Pg.134]    [Pg.135]    [Pg.137]    [Pg.14]    [Pg.206]    [Pg.16]    [Pg.120]    [Pg.46]    [Pg.379]    [Pg.397]    [Pg.146]    [Pg.189]    [Pg.316]    [Pg.162]    [Pg.241]    [Pg.412]    [Pg.546]    [Pg.547]    [Pg.108]    [Pg.429]    [Pg.48]   


SEARCH



Nickel special-purpose

© 2024 chempedia.info