Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel continued oxides

Metals are most active when they first deposit on the catalyst. With time, they lose their initial effectiveness through continuous oxidation-reduction cycles. On average, about one third of the nickel on the equilibrium catalyst will have the activity to promote dehydrogenation reactions. [Pg.64]

Another way to protect a metal uses an impervious metal oxide layer. This process is known as passivation, hi some cases, passivation is a natural process. Aluminum oxidizes readily in air, but the result of oxidation is a thin protective layer of AI2 O3 through which O2 cannot readily penetrate. Aluminum oxide adheres to the surface of unoxidized aluminum, protecting the metal from further reaction with O2. Passivation is not effective for iron, because iron oxide is porous and does not adhere well to the metal. Rust continually flakes off the surface of the metal, exposing fresh iron to the atmosphere. Alloying iron with nickel or chromium, whose oxides adhere well to metal surfaces, can be used to prevent corrosion. For example, stainless steel contains as much as 17% chromium and 10% nickel, whose oxides adhere to the metal surface and prevent corrosion. [Pg.1408]

Such an activation of the electrode surface can, on the one hand, take place in situ by the continuous formation of the active redox agent on the electrode surface during the electrolysis. This is valid, for example, for the nickel(III)oxide hydroxide electrode which is spontaneously formed during anodic polarization of a... [Pg.5]

This is the mechanism of an indirect electrolysis, where the nickel oxide hydroxide acts as an electrocatalyst that is continuously renewed. Some observations, however, are not consistent with this mechanism. The addition of an oxidizable alcohol should lead to an increase of the current for the nickel hydroxide oxidation and a decrease for its reduction This is not the case. The currents for nickel hydroxide and nickel oxide hydroxide remain unchanged, whilst at more anodic potential a new peak for the alcohol oxidation appears. This problem has also been addressed by Vertes... [Pg.107]

With regard to Eq. (9-20) a steady state coverage with NiO(OH) will be attained, i.e. continuous oxidation reaction with a continuous current flow will be observed under potentiostatic conditions. All this means that the nickel oxide catalyst is turned into a nickel oxide electrocatalyst, that can be used in electrosynthesis. The most important synthetic reactions emplo)dng such electrodes are as follows ... [Pg.304]

To provide Ihc best coniact to the tcnninals rf silver oxide batteries, it is recommended that the deviee contacts be made d" a spring material such as phosphor bronze or beryllium copper, which will maintain a contact force cf at least 50g for an extended period of time. The contacts should be plated widi about 50.8 pm nickel (continuous)followed by a minimum of 5.08 um gold The reliability d" the contact can be further increased ty subdividing the main contact member into two. three or more individual points or prongs sudt as the tines of a fork... [Pg.601]

In the chemistry of nickel, we observe the continuing tendency for the higher oxidation states to decrease in stability along the first transition series unlike cobalt and iron, the -e3 state is rare and relatively unimportant for nickel and the +2 state is the only important one. [Pg.406]

Metal-Matrix Composites. A metal-matrix composite (MMC) is comprised of a metal ahoy, less than 50% by volume that is reinforced by one or more constituents with a significantly higher elastic modulus. Reinforcement materials include carbides, oxides, graphite, borides, intermetahics or even polymeric products. These materials can be used in the form of whiskers, continuous or discontinuous fibers, or particles. Matrices can be made from metal ahoys of Mg, Al, Ti, Cu, Ni or Fe. In addition, intermetahic compounds such as titanium and nickel aluminides, Ti Al and Ni Al, respectively, are also used as a matrix material (58,59). P/M MMC can be formed by a variety of full-density hot consolidation processes, including hot pressing, hot isostatic pressing, extmsion, or forging. [Pg.191]

The first-stage catalysts for the oxidation to methacrolein are based on complex mixed metal oxides of molybdenum, bismuth, and iron, often with the addition of cobalt, nickel, antimony, tungsten, and an alkaU metal. Process optimization continues to be in the form of incremental improvements in catalyst yield and lifetime. Typically, a dilute stream, 5—10% of isobutylene tert-huty alcohol) in steam (10%) and air, is passed over the catalyst at 300—420°C. Conversion is often nearly quantitative, with selectivities to methacrolein ranging from 85% to better than 95% (114—118). Often there is accompanying selectivity to methacrylic acid of an additional 2—5%. A patent by Mitsui Toatsu Chemicals reports selectivity to methacrolein of better than 97% at conversions of 98.7% for a yield of methacrolein of nearly 96% (119). [Pg.253]

Nickel sulfate also is made by the reaction of black nickel oxide and hot dilute sulfuric acid, or of dilute sulfuric acid and nickel carbonate. The reaction of nickel oxide and sulfuric acid has been studied and a reaction induction temperature of 49°C deterrnined (39). High purity nickel sulfate is made from the reaction of nickel carbonyl, sulfur dioxide, and oxygen in the gas phase at 100°C (40). Another method for the continuous manufacture of nickel sulfate is the gas-phase reaction of nickel carbonyl and nitric acid, recovering the soHd product in sulfuric acid, and continuously removing the soHd nickel sulfate from the acid mixture (41). In this last method, nickel carbonyl and sulfuric acid are fed into a closed-loop reactor. Nickel sulfate and carbon monoxide are produced the CO is thus recycled to form nickel carbonyl. [Pg.10]

Zirconium tetrafluoride [7783-64-4] is used in some fluoride-based glasses. These glasses are the first chemically and mechanically stable bulk glasses to have continuous high transparency from the near uv to the mid-k (0.3—6 -lm) (117—118). Zirconium oxide and tetrachloride have use as catalysts (119), and zirconium sulfate is used in preparing a nickel catalyst for the hydrogenation of vegetable oil. Zirconium 2-ethyIhexanoate [22464-99-9] is used with cobalt driers to replace lead compounds as driers in oil-based and alkyd paints (see Driers and metallic soaps). [Pg.433]

Ethylamines. Mono-, di-, and triethylamines, produced by catalytic reaction of ethanol with ammonia (330), are a significant outlet for ethanol. The vapor-phase continuous process takes place at 1.38 MPa (13.6 atm) and 150—220°C over a nickel catalyst supported on alumina, siUca, or sihca—alumina. In this reductive amination under a hydrogen atmosphere, the ratio of the mono-, di-, and triethylamine product can be controlled by recycling the unwanted products. Other catalysts used include phosphoric acid and derivatives, copper and iron chlorides, sulfates, and oxides in the presence of acids or alkaline salts (331). Piperidine can be ethylated with ethanol in the presence of Raney nickel catalyst at 200°C and 10.3 MPa (102 atm), to give W-ethylpiperidine [766-09-6] (332). [Pg.415]

The difference in stability between FeO and NiO is not as large as that between iron and copper oxides, and so the preferential oxidation of iron is not so marked in pentlandite. Furthermore, the nickel and iron monoxides form a continuous series of solid solutions, and so a small amount of nickel is always removed into die oxide phase (Table 9.2). [Pg.275]

The use of equipment close to the temperature at wliich the material was diffusion treated will result in continuing diffusion of chromium, aluminum etc., into the substrate, thus depleting chromium with consequent loss in oxidation and corrosion resistance. For aluminum, this effect is noticeable above 700°C in steels, and above 900°C in nickel alloys. For chromium, the effect is pronounced above 850°C for steels and above 950°C for nickel alloys. [Pg.101]


See other pages where Nickel continued oxides is mentioned: [Pg.480]    [Pg.17]    [Pg.800]    [Pg.480]    [Pg.316]    [Pg.216]    [Pg.230]    [Pg.480]    [Pg.804]    [Pg.495]    [Pg.887]    [Pg.181]    [Pg.201]    [Pg.156]    [Pg.227]    [Pg.385]    [Pg.668]    [Pg.384]    [Pg.138]    [Pg.139]    [Pg.7]    [Pg.476]    [Pg.208]    [Pg.371]    [Pg.260]    [Pg.1149]    [Pg.905]    [Pg.275]    [Pg.440]    [Pg.915]    [Pg.1072]    [Pg.272]    [Pg.541]   
See also in sourсe #XX -- [ Pg.261 , Pg.274 ]

See also in sourсe #XX -- [ Pg.261 , Pg.274 ]




SEARCH



Continuous oxidation

Nickel continued

Nickel oxide

Nickel oxide oxidation

Nickelic oxide

Nickelous oxide

Oxidation—continued

© 2024 chempedia.info