Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neutrophil, superoxide from

In parallel, Tamura et al. [114] conducted a brief investigation into the cytotoxic effect of purified CNTs in cultured neutrophils isolated from human blood. Purified CNTs significantly increased superoxide anion and TNF-a production after 1 h, and caused cell death. Unfortunately, no details of the CNT structure, synthesis, or handling methods were provided. [Pg.193]

Thus, oxygen radical production by leukocytes can be responsible for cancer development. However, the levels of leukocyte oxygen radical generation depend on the type of cancer. For example, PMNs and monocytes from peripheral blood of patients with lung cancer produced a diminished amount of superoxide [169], Timoshenko et al. [170] observed the reduction of superoxide production in bronchial carcinoma patients after the incubation of neutrophils with concanavalin A or human lectin, while neutrophils from breast cancer patients exhibited no change in their activity. Chemotherapy of lung and colorectal carcinoma patients also reduced neutrophil superoxide production. Human ALL and AML cells produced, as a rule, the diminished amounts of superoxide in response to PMA or FMLP [171], On the other hand total SOD activity was enhanced in AML cells but diminished in ALL cells, while MnSOD in AML cells was very low. It has been proposed that decreased superoxide production may be responsible for susceptibility to infections in cancer patients. [Pg.927]

Figure 8. Simultaneous measurement of intracellular Ca and oxidant production in neutrophils. Cells were labeled with Quin-2 and suspended at 2 x lo cells/mL buffer. At time zero, 1 nJf FLPEP was added (upper trace in each panel). In addition, the receptor blocker tBOC was added (3 x 10" M) after 30 s to stop further binding of the stimulus (lower trace in each panel). The excitation wavelength was 3A0 nm. Top panel Quin-2 fluorescence determined on channel B (of Figure 1) using a Corion A90-nm interference filter. The crossover from the superoxide assay has been subtracted. Middle panel Oxidant production (superoxide equivalents) determined by the para-hydroxyphenylacetate assay. Fluorescence was observed at AOO nm (on channel A of Figure 1). Figure 8. Simultaneous measurement of intracellular Ca and oxidant production in neutrophils. Cells were labeled with Quin-2 and suspended at 2 x lo cells/mL buffer. At time zero, 1 nJf FLPEP was added (upper trace in each panel). In addition, the receptor blocker tBOC was added (3 x 10" M) after 30 s to stop further binding of the stimulus (lower trace in each panel). The excitation wavelength was 3A0 nm. Top panel Quin-2 fluorescence determined on channel B (of Figure 1) using a Corion A90-nm interference filter. The crossover from the superoxide assay has been subtracted. Middle panel Oxidant production (superoxide equivalents) determined by the para-hydroxyphenylacetate assay. Fluorescence was observed at AOO nm (on channel A of Figure 1).
Reduced scavenger capacity is deduced from studies demonstrating low plasma and cellular levels of antioxidants such as glutathione, vitamin E, thiols, magnesium and ascorbic acid, as well as reduced levels of scavenger enzymes such as neutrophil glutathione peroxidase and red cell superoxide dismutase (Lyons, 1991 Sinclair /., 1992). [Pg.185]

Tumour necrosis factor provokes superoxide anion generation from neutrophils. Biochem. Biophys. Res. Commun. 137, 1094-1100. [Pg.231]

K. Tanaka, F. Kobayashi, Y. Isogai, and T. Iizuka, Electrochemical determination of superoxide anions generated from a single neutrophil. Bioelectrochem. Bioenerg. 26, 413—421 (1991). [Pg.203]

The existence of nitric oxide synthase (NOS) in phagocytes (see below) provides a different kind of stimulation and the inhibition of NADPH oxidase. It has been found [72] that the low physiological concentrations of peroxynitrite formed from NO and superoxide stimulated superoxide production by PMA-activated human PMNs through the ERK MAPK pathway, while higher peroxynitrite concentrations inhibited it. Moreover, NADPH oxidase was inhibited by lidocaine, a sodium-blocker, in OZ-activated neutrophils through the suppression of p47phox translocation [73]. [Pg.724]

At the same time the interaction of superoxide with MPO may affect a total superoxide production by phagocytes. Thus, the superoxide adduct of MPO (Compound III) is probably quantitatively formed in PMA-stimulated human neutrophils [223]. Edwards and Swan [224] proposed that superoxide production regulate the respiratory burst of stimulated human neutrophils. It has also been suggested that the interaction of superoxide with HRP, MPO, and LPO resulted in the formation of Compound III by a two-step reaction [225]. Superoxide is able to react relatively rapidly with peroxidases and their catalytic intermediates. For example, the rate constant for reaction of superoxide with Fe(III)MPO is equal to 1.1-2.1 x 1061 mol 1 s 1 [226], and the rate constants for the reactions of Oi and HOO with HRP Compound I are equal to 1.6 x 106 and 2.2 x 1081 mol-1 s-1, respectively [227]. Thus, peroxidases may change their functions, from acting as prooxidant enzymes and the catalysts of free radical processes, and acquire antioxidant catalase properties as shown for HRP [228] and MPO [229]. In this case catalase activity depends on the two-electron oxidation of hydrogen peroxide by Compound I. [Pg.738]

It follows from the above that the neutrophil-mediated LDL oxidation may occur by both NADPH oxidase- and MPO-dependent mechanisms. It was recently demonstrated [162] that the rates of formation of phosphatidylcholine and cholesteryl ester hydroperoxides during LDL oxidation by PMA-stimulated neutrophils of MPO-knockout mice were about 66% and 44% of those by wild-type neutrophils. In both cases LDL oxidation was inhibited by SOD. These findings suggest that superoxide mediates both NADPH oxidase- and MPO-dependent pathways of oxidation by stimulated neutrophils. [Pg.796]

N. K., Palmer, R. M., Whittle, B. J., Moncada, S., Synthesis of nitric oxide from L-arginine by neutrophils. Release and interaction with superoxide anion, Biochem. J. 261 (1989), p. 293-296... [Pg.274]


See other pages where Neutrophil, superoxide from is mentioned: [Pg.218]    [Pg.222]    [Pg.922]    [Pg.923]    [Pg.237]    [Pg.855]    [Pg.115]    [Pg.855]    [Pg.64]    [Pg.58]    [Pg.269]    [Pg.336]    [Pg.579]    [Pg.861]    [Pg.205]    [Pg.861]    [Pg.45]    [Pg.77]    [Pg.118]    [Pg.127]    [Pg.144]    [Pg.158]    [Pg.217]    [Pg.227]    [Pg.242]    [Pg.249]    [Pg.693]    [Pg.706]    [Pg.733]    [Pg.868]    [Pg.927]    [Pg.932]    [Pg.933]    [Pg.935]    [Pg.969]    [Pg.154]    [Pg.248]    [Pg.363]    [Pg.55]   
See also in sourсe #XX -- [ Pg.100 ]




SEARCH



Neutrophils

© 2024 chempedia.info