Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neutron in fission

Figure 2.16 shows the growth of xenon to its steady-state value during reactor operation and its subsequent decay after the reactor is shut down. The quantity plotted is the xenon poison ratio, which is the ratio of the rate of absorption of neutrons by xenon to the rate of absorption of neutrons in fission of NxtOxJNfOf. Curves are given for fluxes of... [Pg.71]

Capture of neutrons in fissionable material, fission, fission products and yield, delayed and prompt neutrons energy release from fission conversions MWD/gm, fissions/watt sec., etc. [Pg.148]

XV-9] INTERNATIONAL ATOMIC ENERGY AGENCY, Irradiation damage in graphite due to fast neutrons in fission and fusion systems, IAEA-TECDOC-1154, Vienna (September 2000). [Pg.485]

IAEA, Irradiation Damage in Graphite Due to Fast Neutrons in Fission and Fusion Systems, IAEA-TECDOC-1154, 2000. [Pg.492]

No hardening of the Maxwellian component of the reactor flvix was assumed to be produced by the selective absorption of low-energy neutrons in fission, control rod, and other capture processes. Of course, such harden-ing exists, but since it affects both the standard gold activation and U fission, the direction of changes are opposite and tend to cancel each other. [Pg.146]

In general, Monte Carlo methods refer to any procedures which involve sampling from random numbers. These methods are used in simulations of natural phenomena, simulation of experimental apparatus, and numerical analysis. An important feature is the simple structure of the computational algorithm. The method was developed by von Neuman, Ulam, and Metroplois during World War II to study the difiiision of neutrons in fissionable materials (ie, atomic bomb design)- Let us consider atom diffusion and demonstrate the principle of the Monte Carlo method. A two-dimensional square grid (Fig. 3.20A) represents interstitial sites in a sofid. [Pg.140]

The rapid fission of a mass of or another heavy nucleus is the principle of the atomic bomb, the energy liberated being the destructive power. For useful energy the reaction has to be moderated this is done in a reactor where moderators such as water, heavy water, graphite, beryllium, etc., reduce the number of neutrons and slow those present to the most useful energies. The heat produced in a reactor is removed by normal heat-exchange methods. The neutrons in a reactor may be used for the formation of new isotopes, e.g. the transuranic elements, further fissile materials ( °Pu from or of the... [Pg.44]

The Model 412 PWR uses several control mechanisms. The first is the control cluster, consisting of a set of 25 hafnium metal rods coimected by a spider and inserted in the vacant spaces of 53 of the fuel assembhes (see Fig. 6). The clusters can be moved up and down, or released to shut down the reactor quickly. The rods are also used to (/) provide positive reactivity for the startup of the reactor from cold conditions, (2) make adjustments in power that fit the load demand on the system, (J) help shape the core power distribution to assure favorable fuel consumption and avoid hot spots on fuel cladding, and (4) compensate for the production and consumption of the strongly neutron-absorbing fission product xenon-135. Other PWRs use an alloy of cadmium, indium, and silver, all strong neutron absorbers, as control material. [Pg.217]

In early 1941, 0.5 )-lg of Pu was produced (eqs. 3 and 4) and subjected to neutron bombardment (9) demonstrating that plutonium undergoes thermal neutron-induced fission with a cross section greater than that of U. In 1942, a self-sustaining chain reaction was induced by fissioning 235u... [Pg.191]

Uses of Plutonium. The fissile isotope Pu had its first use in fission weapons, beginning with the Trinity test at Alamogordo, New Mexico, on July 16, 1945, followed soon thereafter by the "Litde Boy" bomb dropped on Nagasaki on August 9, 1945. Its weapons use was extended as triggers for thermonuclear weapons. This isotope is produced in and consumed as fuel in breeder reactors. The short-Hved isotope Tu has been used in radioisotope electrical generators in unmanned space sateUites, lunar and interplanetary spaceships, heart pacemakers, and (as Tu—Be alloy) neutron sources (23). [Pg.193]

Neutron radiation is emitted in fission and generally not spontaneously, although a few heavy radionueleides, e.g. plutonium, undergo spontaneous fission. More often it results from bombarding beryllium atoms with an a-emitter. Neutron radiation deeays into protons and eleetrons with a half-life of about 12 min and is extremely penetrating. [Pg.392]

In the early years of this century the periodic table ended with element 92 but, with J. Chadwick s discovery of the neutron in 1932 and the realization that neutron-capture by a heavy atom is frequently followed by j6 emission yielding the next higher element, the synthesis of new elements became an exciting possibility. E. Fermi and others were quick to attempt the synthesis of element 93 by neutron bombardment of but it gradually became evident that the main result of the process was not the production of element 93 but nuclear fission, which produces lighter elements. However, in 1940, E. M. McMillan and P. H. Abelson in Berkeley, California, were able to identify, along with the fission products, a short-lived isotope of... [Pg.1251]

Nuclear fission is a process in which a heavy nucleus—usually one with a nucleon number of two hundred or more—separates into two nuclei. Usually the division liberates neutrons and electromagnetic radiation and releases a substantial amount of energy. The discoveiyi of nuclear fission is credited to Otto I lahn and Fritz Strassman. In the process of bombarding uranium with neutrons in the late 1930s, they detected several nuclear products of significantly smaller mass than uranium, one of which was identified as Ba. The theorectical underpinnings that exist to this day for nuclear fission were proposed by Lise Meitner and Otto Frisch. Shortly after Hahn and Strassman s discovery. [Pg.858]

Some heavy nuclei will fission spontaneously. Others can be induced to fission through interaction with a neutron. In both spontaneous nuclear fission and induced nuclear fission the pool of neutrons and protons is conseiwed. For example, the nucleus "" Cf (Californium) fissions spontaneously. The 98 protons and 154 neutrons in the nucleus of Cf are reconfigured into other nuclei. Usually a few neu-... [Pg.858]

The nucleus """U (uranium) does not fission spontaneously, but It can be induced to fission through interaction with a neutron. Pictorially, a typical neutron-induced fission of " U producing two nuclei and three neutrons is depicted in Figure 2. [Pg.858]

The fuel in a nuclear fission reactor is generally "U atoms arranged appropriately in a reactor vessel. Neutrons instigate fission of nuclei ofatoms and liberate energy. The energy output may be controlled either by regulating the fuel and/or adjusting the neu-... [Pg.861]

Plutonium-239 is a fissile element, and vvill split into fragments when struck by a neutron in the nuclear reactor. This makes Pu-239 similar to U-235, able to produce heat and sustain a controlled nuclear reaction inside the nuclear reactor. Nuclear power plants derive over one-third of their power output from the fission of Pu-239. Most of the uranium inside nuclear fuel is U-238. Only a small fraction is the fissile U-235. Over the life cycle of the nuclear fuel, the U-238 changes into Pu-239, which continues to provide nuclear energy to generate electricity. [Pg.869]

The heart of the nuclear reactor boiler plant system is the reactor core, in which the nuclear fission process takes place. Nuclear fission is the splitting of a nucleus into two or more separate nuclei. Fission is usually by neutron particle bombardment and is accompanied by the release of a very large amount of energy, plus additional neutrons, other particles, and radioactive material. The generation of new neutrons during fission makes possible a chain reaction process and the subsequent... [Pg.61]

In 1938, Lise Meitner, Otto Hahn, and Fritz Strassmann realized that, by bombarding heavy atoms such as uranium with neutrons, they could split the atoms into smaller fragments in fission reactions, releasing huge amounts of energy. We can estimate the energy that would be released by using Einstein s equation, as we did in Example 17.5. [Pg.836]

FIGURE 17.24 A self-sustaining chain reaction, in which neutrons are the chain carriers, takes place when induced fission produces more than one neutron per fission event. These newly produced neutrons can stimulate fission in increasingly greater numbers of other nuclei. [Pg.839]

Nuclear energy can be extracted by arranging for a nuclear chain reaction to take place in a critical mass of fissionable material. with neutrons as the chain carriers. A moderator is used to reduce the speeds of the neutrons in a reactor that uses fissile material. [Pg.840]

Baumgartner and Reichold prepared carrier-free Mo(CO)g in high yield by neutron irradiation of powdered mixtures of UjOg and Cr(CO)g. As with their preparation of ° RuCp2, the Cr(CO)g acted only as a catcher for fission-product molybdenum (and for its precursors niobium and zirconium). The yield of 60% found for Mo(CO)6 is higher than the fractional chain yield of Mo in fission, so that the reaction must be partly thermal, starting with molecular fragments which survive j8 decay. [Pg.77]

The moderator component of a reactor slows neutrons without capturing them. Moderators are used because the neutrons released in fission have such high kinetic energies that they are difficult to capture. The critical mass of a nuclear fuel is much smaller for slow neutrons than for fast neutrons, so considerably less fuel is needed in a... [Pg.1586]


See other pages where Neutron in fission is mentioned: [Pg.70]    [Pg.70]    [Pg.44]    [Pg.104]    [Pg.104]    [Pg.33]    [Pg.70]    [Pg.70]    [Pg.44]    [Pg.104]    [Pg.104]    [Pg.33]    [Pg.345]    [Pg.225]    [Pg.150]    [Pg.179]    [Pg.211]    [Pg.221]    [Pg.224]    [Pg.195]    [Pg.249]    [Pg.402]    [Pg.205]    [Pg.206]    [Pg.205]    [Pg.1256]    [Pg.860]    [Pg.861]    [Pg.861]    [Pg.863]    [Pg.527]    [Pg.356]   
See also in sourсe #XX -- [ Pg.195 ]




SEARCH



Fission neutron

© 2024 chempedia.info