Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neutron addition

For heavy elements with atomic masses greater than ss 56 their proton numbers are so large that electrostatic repulsion inhibits charged particle reactions (e.g., proton and a captures) except under very specific conditions. Most heavy nuclei are instead formed by neutron addition onto abundant Fe-peak elements. For this reason, neutron-capture processes are secondary. That is, they require that some Fe-peak nuclei (e.g., 56Fe) is already present in the star. The solar abundance distribution is characterized by peaks that can be explained by... [Pg.153]

Mossbauer hyperfine spectra are useful in the determination of nuclear parameters, especially those of the excited states. Their significance stems from the fact that the structure of the nucleus is still poorly understood. Comparison of the parameters as measured with the values estimated from theory is used to discover the validity or inadequacy of the nuclear model. The rare-earth elements are popular for this type of work because of the proliferation of Mossbauer resonances, making it feasible to study the effects of successive proton or neutron addition over a range of nuclei. Although theory and experiment are sometimes in accord, gross differences are not unusual. [Pg.82]

The correlation functions provide an alternate route to the equilibrium properties of classical fluids. In particular, the two-particle correlation fimction of a system with a pairwise additive potential detemrines all of its themiodynamic properties. It also detemrines the compressibility of systems witir even more complex tliree-body and higher-order interactions. The pair correlation fiinctions are easier to approximate than the PFs to which they are related they can also be obtained, in principle, from x-ray or neutron diffraction experiments. This provides a useful perspective of fluid stmcture, and enables Hamiltonian models and approximations for the equilibrium stmcture of fluids and solutions to be tested by direct comparison with the experimentally detennined correlation fiinctions. We discuss the basic relations for the correlation fiinctions in the canonical and grand canonical ensembles before considering applications to model systems. [Pg.465]

Nowadays, chemical elements are represented in abbreviated form [2]. Each element has its ovm symbol, which typically consists of the initial upper-case letter of the scientific name and, in most cases, is followed by an additional characteristic lower-case letter. Together with the chemical symbol, additional information can be included such as the total number of protons and neutrons in the nucleus, the atomic number (the number of protons in the nucleus) thus isotopes can be distinguished, e.g., The charge value and, finally, the number of atoms which are present in the molecule can be given (Figure 2-3). For example, dioxygen is represented by O2. [Pg.19]

For two and three dimensions, it provides a erude but useful pieture for eleetronie states on surfaees or in erystals, respeetively. Free motion within a spherieal volume gives rise to eigenfunetions that are used in nuelear physies to deseribe the motions of neutrons and protons in nuelei. In the so-ealled shell model of nuelei, the neutrons and protons fill separate s, p, d, ete orbitals with eaeh type of nueleon foreed to obey the Pauli prineiple. These orbitals are not the same in their radial shapes as the s, p, d, ete orbitals of atoms beeause, in atoms, there is an additional radial potential V(r) = -Ze /r present. However, their angular shapes are the same as in atomie strueture beeause, in both eases, the potential is independent of 0 and (j). This same spherieal box model has been used to deseribe the orbitals of valenee eleetrons in elusters of mono-valent metal atoms sueh as Csn, Cun, Nan and their positive and negative ions. Beeause of the metallie nature of these speeies, their valenee eleetrons are suffieiently deloealized to render this simple model rather effeetive (see T. P. Martin, T. Bergmann, H. Gohlieh, and T. Lange, J. Phys. Chem. 6421 (1991)). [Pg.21]

Several portions of Section 4, Properties of Atoms, Radicals, and Bonds, have been significantly enlarged. For example, the entries under Ionization Energy of Molecular and Radical Species now number 740 and have an additional column with the enthalpy of formation of the ions. Likewise, the table on Electron Affinities of the Elements, Molecules, and Radicals now contains about 225 entries. The Table of Nuclides has material on additional radionuclides, their radiations, and the neutron capture cross sections. [Pg.1283]

Hafnium is obtained as a by-product of the production of hafnium-free nuclear-grade 2irconium (see Nuclear reactors Zirconiumand zirconium compounds). Hafnium s primary use is as a minor strengthening agent in high temperature nickel-base superakoys. Additionally, hafnium is used as a neutron-absorber material, primarily in the form of control rods in nuclear reactors. [Pg.439]

The main use of lead metaborate is in glazes on pottery, porcelain, and chinaware, as weU as in enamels for cast iron. Other appHcations include as radiation-shielding plastics, as a gelatinous thermal insulator containing asbestos fibers for neutron shielding, and as an additive to improve the properties of semiconducting materials used in thermistors (137). [Pg.72]

Niobium is also important in nonferrous metallurgy. Addition of niobium to tirconium reduces the corrosion resistance somewhat but increases the mechanical strength. Because niobium has a low thermal-neutron cross section, it can be alloyed with tirconium for use in the cladding of nuclear fuel rods. A Zr—l%Nb [11107-78-1] alloy has been used as primary cladding in the countries of the former USSR and in Canada. A Zr—2.5 wt % Nb alloy has been used to replace Zircaloy-2 as the cladding in Candu-PHW (pressurized hot water) reactors and has resulted in a 20% reduction in wall thickness of cladding (63) (see Nuclear reactors). [Pg.26]

The fifth component is the stmcture, a material selected for weak absorption for neutrons, and having adequate strength and resistance to corrosion. In thermal reactors, uranium oxide pellets are held and supported by metal tubes, called the cladding. The cladding is composed of zirconium, in the form of an alloy called Zircaloy. Some early reactors used aluminum fast reactors use stainless steel. Additional hardware is required to hold the bundles of fuel rods within a fuel assembly and to support the assembhes that are inserted and removed from the reactor core. Stainless steel is commonly used for such hardware. If the reactor is operated at high temperature and pressure, a thick-walled steel reactor vessel is needed. [Pg.210]

Water as coolant in a nuclear reactor is rendered radioactive by neutron irradiation of corrosion products of materials used in reactor constmction. Key nucHdes and the half-Hves in addition to cobalt-60 are nickel-63 [13981 -37-8] (100 yr), niobium-94 [14681-63-1] (2.4 x 10 yr), and nickel-59 [14336-70-0] (7.6 x lO" yr). Occasionally small leaks in fuel rods allow fission products to enter the cooling water. Cleanup of the water results in LLW. Another source of waste is the residue from appHcations of radionucHdes in medical diagnosis, treatment, research, and industry. Many of these radionucHdes are produced in nuclear reactors, especially in Canada. [Pg.228]

Properties of Particles. From the research of the early part of the twentieth century, the existence of several types of particles was firmly estabhshed, and the properties were deterrnined. The particles that are involved in the decay of radioisotopes are given in Table 4. An additional type of conservation is that in all atomic and nuclear decays, the number of nucleons, ie, protons and neutrons, is conserved and the number of leptons, ie, electrons and neutrinos, is also conserved. [Pg.445]

There are four modes of radioactive decay that are common and that are exhibited by the decay of naturally occurring radionucHdes. These four are a-decay, j3 -decay, electron capture and j3 -decay, and isomeric or y-decay. In the first three of these, the atom is changed from one chemical element to another in the fourth, the atom is unchanged. In addition, there are three modes of decay that occur almost exclusively in synthetic radionucHdes. These are spontaneous fission, delayed-proton emission, and delayed-neutron emission. Lasdy, there are two exotic, and very long-Hved, decay modes. These are cluster emission and double P-decay. In all of these processes, the energy, spin and parity, nucleon number, and lepton number are conserved. Methods of measuring the associated radiations are discussed in Reference 2 specific methods for y-rays are discussed in Reference 1. [Pg.448]

In addition to the above techniques, inverse gas chromatography, swelling experiments, tensile tests, mechanical analyses, and small-angle neutron scattering have been used to determine the cross-link density of cured networks (240—245). Si soHd-state nmr and chemical degradation methods have been used to characterize cured networks stmcturaHy (246). H- and H-nmr and spin echo experiments have been used to study the dynamics of cured sihcone networks (247—250). [Pg.49]


See other pages where Neutron addition is mentioned: [Pg.11]    [Pg.30]    [Pg.236]    [Pg.192]    [Pg.558]    [Pg.558]    [Pg.564]    [Pg.566]    [Pg.11]    [Pg.30]    [Pg.236]    [Pg.192]    [Pg.558]    [Pg.558]    [Pg.564]    [Pg.566]    [Pg.443]    [Pg.444]    [Pg.543]    [Pg.1379]    [Pg.1381]    [Pg.313]    [Pg.9]    [Pg.345]    [Pg.215]    [Pg.167]    [Pg.150]    [Pg.150]    [Pg.335]    [Pg.225]    [Pg.261]    [Pg.20]    [Pg.130]    [Pg.236]    [Pg.242]    [Pg.242]    [Pg.244]    [Pg.149]    [Pg.203]    [Pg.10]    [Pg.449]    [Pg.476]    [Pg.499]    [Pg.315]    [Pg.11]   
See also in sourсe #XX -- [ Pg.6 , Pg.11 ]




SEARCH



© 2024 chempedia.info