Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neutralizers, definition

Definite quantities of acid neutralize definite quantities of alkali. [Pg.125]

Glycine itself is almost neutral, and requires very little sodium hydroxide to give a pink colour with phenolphthalein some other amino-acids, e.g., glutamic acid, aspartic acid, etc., are definitely more acidic and consequently require more alkali for this purpose cf. footnote, p. 380). [Pg.463]

The distillate may contain volatile neutral compounds as well as volatile acids and phenols. Add a slight excess of 10-20 per cent, sodium hydroxide solution to this distillate and distil until the liquid passes over clear or has the density of pure water. The presence of a volatile, water-soluble neutral compound is detected by a periodic determination of the density (see Section XI,2) if the density is definitely less than unity, the presence of a neutral compound may be assumed. Keep this solution Si) for Step 4. [Pg.1098]

Within the scope of the original definition, a very wide variety of ionomers can be obtained by the introduction of acidic groups at molar concentrations below 10% into the important addition polymer families, followed by partial neutralization with metal cations or amines. Extensive studies have been reported, and useful reviews of the polymers have appeared (3—8). Despite the broad scope of the field and the unusual property combinations obtainable, commercial exploitation has been confined mainly to the original family based on ethylene copolymers. The reasons for this situation have been discussed (9). Within certain industries, such as flexible packaging, the word ionomer is understood to mean a copolymer of ethylene with methacrylic or acryhc acid, partly neutralized with sodium or zinc. [Pg.404]

Plasma can be broadly defined as a state of matter in which a significant number of the atoms and/or molecules are electrically charged or ionized. The generally accepted definition is limited to situations whereia the numbers of negative and positive charges are equal, and thus the overall charge of the plasma is neutral. This limitation on charge leaves a fairly extensive subject area. The vast majority of matter ia the universe exists ia the plasma state. Interstellar space, interplanetary space, and even the stars themselves are plasmas. [Pg.106]

F. Analysis for ozone. The analysis is made by passing a definite amount of oxygen through the ozonizer at a selected secondary voltage and then through a neutral 5% solution of potassium iodide. Iodine is liberated,... [Pg.68]

Protonation of the a-carbanion (50), which is formed both in the reduction of enones and ketol acetates, probably first affords the neutral enol and is followed by its ketonization. Zimmerman has discussed the stereochemistry of the ketonization of enols and has shown that in eertain cases steric factors may lead to kinetically controlled formation of the thermodynamically less stable ketone isomer. Steroidal unsaturated ketones and ketol acetates that could form epimeric products at the a-carbon atom appear to yield the thermodynamically stable isomers. In most of the cases reported, however, equilibration might have occurred during isolation of the products so that definitive conclusions are not possible. [Pg.35]

B H +g. No neutral borane has yet been definitely established in this series but the known compounds BgHie and BioHig may prove to be hypho-hormcs and several adducts are known to have hypho-stmctures (pp. 171-2). [Pg.169]

Attempts have been made to deduce the structure of the predominant form of a potentially tautomeric compound from the shifts which occur in the ultraviolet spectrum of the compound in question on passing from neutral to basic or acidic solutions. The fact that no bathochromic shifts were observed for 2- and 4-hydroxy quinoline and 1-hydroxyisoquinoline under these conditions was taken as evidence that they existed in the oxo form [similar work on substituted quinol-4-ones led to no definite conclusions ]. A knowledge of the dissociation constants is essential to studies of this type, and the conclusions can, in any case, be only very tentative. A further dif-... [Pg.348]

Most of the work done in the pteridine series has been concerned with the equilibria between the neutral species and the anions. This work was more fruitful than that involving the cations because all three of the values, p /, p a , and pK/ (for definitions, see Section II, A), could be determined, and, from these, ratios of the hydrated to the anhydrous forms were calculated. Furthermore, the kinetics in the... [Pg.28]

The last definition has widespread use in the volumetric analysis of solutions. If a fixed amount of reagent is present in a solution, it can be diluted to any desired normality by application of the general dilution formula V,N, = V N. Here, subscripts 1 and 2 refer to the initial solution and the final (diluted) solution, respectively V denotes the solution volume (in milliliters) and N the solution normality. The product VjN, expresses the amount of the reagent in gram-milliequivalents present in a volume V, ml of a solution of normality N,. Numerically, it represents the volume of a one normal (IN) solution chemically equivalent to the original solution of volume V, and of normality N,. The same equation V N, = V N is also applicable in a different context, in problems involving acid-base neutralization, oxidation-reduction, precipitation, or other types of titration reactions. The justification for this formula relies on the fact that substances always react in titrations, in chemically equivalent amounts. [Pg.330]

The mechanisms of corrosion inhibition will be described separately for acid and neutral solutions, since there are considerable differences in mechanisms between these two media. Definitions and classifications of inhibitors are given in Section 17.2 and by Fischer. ... [Pg.806]

At any interface between two different phases there will be a redistribution of charge in each phase at the interface with a consequent loss of its electroneutrality, although the interface as a whole remains electrically neutral. (Bockris considers an interface to be sharp and definite to within an atomic layer, whereas an interphase is less sharply defined and may extend from at least two molecular diameters to tens of thousands of nanometres the interphase may be regarded as the region between the two phases in which the properties have not yet reached those of the bulk of either phase .) In the simplest case the interface between a metal and a solution could be visualised as a line of excess electrons at the surface of the metal and an equal number of positive charges in the solution that are in contact with the metal (Fig. 20.2). Thus although each phase has an excess charge the interface as a whole is electrically neutral. [Pg.1168]

We see that we can attach a definite physical meaning both to the existence of a neutral molecule in solution, and to the dissociation of this molecule into a pair of ions. Consider points near P and near Q in Fig. 27c. A point on the curve near P corresponds to the situation where the distance between the nuclei of the two ions has, say, the value OA, while a point on the curve near Q corresponds to the separation OB. If the separation of the nuclei is increased from OA to OB, a considerable amount of work is done against the short-range forces of attraction, in order to go from P to Q. But at Q the short-range forces are no longer operative and the neutral molecule has been dissociated into a pair of ions, between which there is the usual electrostatic attraction. [Pg.62]

According to the Hiickel criteria for aromaticity, a molecule must be cyclic, conjugated (that is, be nearly planar and have ap orbital on each carbon) and have 4n + 2 tt electrons. Nothing in this definition says that the number of p orbitals and the number of nr elections in those orbitals must be the same. In fact, they can he different. The 4n + 2 rule is broadly applicable to many kinds of molecules and ions, not just to neutral hydrocarbons. For example, both the cydopentadienyl anion and the cycloheptatrienyl cation are aromatic. [Pg.525]

Every atom contains a definite number of electrons. This number, which runs from 1 to more than 100, is characteristic of a neutral atom of a particular element All atoms of hydrogen contain one electron all atoms of the element uranium contain 92 electrons. We will have more to say in Chapter 6 about how these electrons are arranged relative to one another. Right now, you need only know that they are found in the outer regions of the atom, where they form what amounts to a cloud of negative charge. [Pg.27]

The standard solution is prepared by dissolving a weighed amount of pure potassium iodate in a solution containing a slight excess of pure potassium iodide, and diluting to a definite volume. This solution has two important uses. The first is as a source of a known quantity of iodine in titrations [compare Section 10.115(A)] it must be added to a solution containing strong acid it cannot be employed in a medium which is neutral or possesses a low acidity. [Pg.386]

Figure 7.9. Schematic representation of the density of states N(E) in the conduction band of two transition metal electrodes (W and R) and of the definitions of work function O, chemical potential of electrons p, electrochemical potential of electrons or Fermi level p, surface potential x, Galvani (or inner) potential (p and Volta (or outer) potential for the catalyst (W) and for the reference electrode (R). The measured potential difference UWr is by definition the difference in p q>, p and p are spatially uniform O and can vary locally on the metal surfaces 21 the T terms are equal, see Fig. 5.18, for the case of fast spillover, in which case they also vanish for an overall neutral cell Reprinted with permission from The Electrochemical Society. Figure 7.9. Schematic representation of the density of states N(E) in the conduction band of two transition metal electrodes (W and R) and of the definitions of work function O, chemical potential of electrons p, electrochemical potential of electrons or Fermi level p, surface potential x, Galvani (or inner) potential (p and Volta (or outer) potential for the catalyst (W) and for the reference electrode (R). The measured potential difference UWr is by definition the difference in p q>, p and p are spatially uniform O and can vary locally on the metal surfaces 21 the T terms are equal, see Fig. 5.18, for the case of fast spillover, in which case they also vanish for an overall neutral cell Reprinted with permission from The Electrochemical Society.
For a given molecule and a given intemuclear separation a would have a definite value, such as to make the energy level for P+ lie as low as possible. If a happens to be nearly 1 for the equilibrium state of the molecule, it would be convenient to say that the bond is an electron-pair bond if a is nearly zero, it could be called an ionic bond. This definition is somewhat unsatisfactory in that it does not depend on easily observable quantities. For example, a compound which is ionic by the above definition might dissociate adiabatically into neutral atoms, the value of a changing from nearly zero to unity as the nuclei separate, and it would do this in case the electron affinity of X were less than the ionization potential of M. HF is an example of such a compound. There is evidence, given bdow, that the normal molecule approximates an ionic compound yet it would dissociate adiabatically into neutral F and H.13... [Pg.71]


See other pages where Neutralizers, definition is mentioned: [Pg.246]    [Pg.445]    [Pg.246]    [Pg.445]    [Pg.171]    [Pg.177]    [Pg.248]    [Pg.434]    [Pg.443]    [Pg.533]    [Pg.26]    [Pg.230]    [Pg.19]    [Pg.771]    [Pg.128]    [Pg.337]    [Pg.252]    [Pg.21]    [Pg.38]    [Pg.262]    [Pg.562]    [Pg.759]    [Pg.459]    [Pg.254]    [Pg.39]    [Pg.352]    [Pg.47]    [Pg.958]    [Pg.94]    [Pg.366]    [Pg.27]    [Pg.26]   
See also in sourсe #XX -- [ Pg.462 ]




SEARCH



© 2024 chempedia.info