Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neutral solutions chemical reactions

Neutralization A chemical reaction used to remove H+ ions from acidic solutions and OH ions from basic solutions. The reaction can be violent and usually produces water, a salt, heat, and many times, a gas. [Pg.405]

In the United States, Hquid HLW from the reprocessing of defense program fuels was concentrated, neutralized with NaOH, and stored in underground, mild steel tanks pending soHdification and geologic disposal (see Tanks AND PRESSURE VESSELS). These wastes are a complex and chemically active slurry. Suspended in the supernatant Hquid are dissolver soHds which never went into solution, insoluble reaction products which formed in the tank, and salts which have exceeded their solubiHty limit. The kinetics of many of the reactions taking place are slow (years) so that the results of characterization... [Pg.206]

Data exist for die endialpy of chemical reactions, formation of substances from dieir constituent elements, combustion, fusion, neutralization, solution, vaporization, etc. [Pg.42]

Chemical Reactivity - Reactivity with Water Dissolves to form an alkaline solution. The reaction is non-violent Reactivity with Common Materials Forms explosion-sensitive materials with some metals such as lead, silver, mercury, and copper Stability During Transport Stable but must not be in contact with acids Neutralizing Agents for Acids and Caustics Not pertinent Polymerization Not pertinent Inhibitor of Polymerization Not pertinent. [Pg.348]

A catalyst is defined as a substance that influences the rate or the direction of a chemical reaction without being consumed. Homogeneous catalytic processes are where the catalyst is dissolved in a liquid reaction medium. The varieties of chemical species that may act as homogeneous catalysts include anions, cations, neutral species, enzymes, and association complexes. In acid-base catalysis, one step in the reaction mechanism consists of a proton transfer between the catalyst and the substrate. The protonated reactant species or intermediate further reacts with either another species in the solution or by a decomposition process. Table 1-1 shows typical reactions of an acid-base catalysis. An example of an acid-base catalysis in solution is hydrolysis of esters by acids. [Pg.26]

The last definition has widespread use in the volumetric analysis of solutions. If a fixed amount of reagent is present in a solution, it can be diluted to any desired normality by application of the general dilution formula V,N, = V N. Here, subscripts 1 and 2 refer to the initial solution and the final (diluted) solution, respectively V denotes the solution volume (in milliliters) and N the solution normality. The product VjN, expresses the amount of the reagent in gram-milliequivalents present in a volume V, ml of a solution of normality N,. Numerically, it represents the volume of a one normal (IN) solution chemically equivalent to the original solution of volume V, and of normality N,. The same equation V N, = V N is also applicable in a different context, in problems involving acid-base neutralization, oxidation-reduction, precipitation, or other types of titration reactions. The justification for this formula relies on the fact that substances always react in titrations, in chemically equivalent amounts. [Pg.330]

Natural mobilization includes chemical, mechanical, and biological weathering and volcanic activity. In chemical weathering, the elements are altered to forms that are more easily transported. For example, when basic rocks are neutralized by acidic fluids (such as rainwater acidified by absorption of CO2), the minerals contained in the rocks can dissolve, releasing metals to aqueous solution. Several examples are listed below of chemical reactions that involve atmospheric gases and that lead to the mobilization of metals ... [Pg.378]

The diversity of chemical reactions is immense. To make sense of this vast expanse of chemistry, we need a system for grouping chemical reactions into categories. The reactions within each category should share some characteristics or follow a common theme. One relatively simple category is precipitation reactions, in which cations and anions in aqueous solution combine to form neutral insoluble solids. [Pg.224]

Sometimes the net chemical reaction is provided, but in other cases we have to examine the species present and determine what reactions can occur among them. The statement of the problem indicates that fluoride anions are present in solution when LiF dissolves In water. To maintain electrical neutrality, Li ions must also be present in equal number. Here is the net reaction LiF (5 ) Li (a g) + F (g g)... [Pg.1165]

When the water is too alkaline, swimmers experience similar physical discomfort—burning eyes and nose and itchy, dry skin. The effect on the pool, however, is different. When water is alkaline, calcium dissolved in the pool water can precipitate (fall) out of solution. A precipitate is a solid that forms from a solution due to a chemical reaction. This solid creates unsightly scales on the sides of the pool. Like water that is too acidic, alkaline water also affects the efficiency of the chlorine. More chlorine needs to be added to alkaline water to effectively disinfect the pool. Over time, a swimming pool that is not kept at a neutral pH can become very expensive to maintain. [Pg.48]

When acids and bases are mixed, a neutralization reaction occurs. Not all acids and bases should be mixed, however. Bleach, which is a solution of sodium or calcium hypochlorite, for example, should never be mixed with any kind of acid because the resulting chemical reaction creates the deadly gas chlorine. Chlorine gas was used as a chemical weapon in World War I, and breathing it can destroy lung tissue. The lungs fill with fluid, and the unfortunate victim eventually dies by suffocation. [Pg.94]

The basic objective of the conversion coating process is to provide a corrosion-resistant film that is integrally bonded chemically and physically to the base metal and that provides a smooth and chemically inert surface for subsequent application of a variety of paint films. The conversion coating processes effectively render the surface of the basis material electrically neutral and immune to galvanic corrosion. Conversion coating on basis material coils does not involve the use of applied electric current to coat the basis material. The coating mechanisms are chemical reactions that occur between solution and basis material.1-4... [Pg.262]

Unlike conventional chemical reactions, the altered reactivity of chemical reactions undergoing ultrasonic irradiation is principally due to acoustic cavitation which essentially involves the free radical formation. The ultrasound produces highly reactive free radical species like H and OH radicals from the homolytic cleavage of water. Further they may react with any of other free radicals present or with neutral molecules like 02 and O3 to produce peroxy species, superoxide, hydrogen peroxide or hydrogen. When the aqueous solution is saturated with 02, extra... [Pg.289]

The oxide is virtually insoluble only in pure water of neutral pH. Its solubility increases sharply in both acid and alkaline solution, because it undergoes chemical reactions of protonation... [Pg.407]

Calculations derived from the measurement of final periodate consumption indicate the number of reactive groups and can often be interpreted to reveal the extent of overoxidation. Chemically, this determination involves the use of one of two general reactions. These are (a) the reduction of periodate and iodate to free iodine in acid solution, and (b) the reduction of periodate to iodate in neutral solution. [Pg.33]

Chemistry within the body is approximately five times faster than in a test tube at room temperature. The reverse is true, of course, with chemical reactions in liquid methane at 100 K some 1.2 x 1035 times slower than at 298 K. Neutral chemical reactions remain slow in solution at 100 K if they have a significant activation barrier. As with the ISM, chemistry involving breaking of chemical bonds is frozen out at 100 K and has direct implications for chemistry on the surface of Titan, for example. [Pg.237]

Dissolved carbon dioxide produces carbonic acid, which ionizes to bicarbonate and carbonate ions, the reactions for which are shown in Figure 5.2 (equations 1-3). This reaction sequence is extremely important because bicarbonate is a counterion to many cations, is active in buffering the soil solution, and is involved either directly or indirectly in many soil chemical reactions. Bicarbonates are generally more soluble than carbonates, which are generally insoluble. Adding acid to carbonates or bicarbonates results in the release of carbon dioxide and the formation of the salt of the acid cation. The acid is thus neutralized. [Pg.116]

Writing the equation in the ionic form shows clearly which species are really reacting and which are not. In the example above, the Na+ and N03 appear on both sides of the equation. They do not react, but are simply there in order to maintain electrical neutrality of the solution. Ions like this, which are not actually involved in the chemical reaction, are spectator ions. [Pg.59]

Interpretation of KIEs on enzymatic processes (see Chapter 11) has been frequently based on the assumption that the intrinsic value of the kinetic isotope effect is known. Chemical reactions have long been used as models for catalytic events occurring in enzyme active sites and in some cases this analogy has worked quite well. One example is the decarboxylation of 4-pyridylacetic acid presented in Fig. 10.9. Depending on the solvent, either the zwitterionic or the neutral form dominates in the solution. Since the reaction rates in D20/H20 solvent mixtures are the same (see Section 11.4 for a discussion of aqueous D/H solvent isotope effects), as are the carbon KIEs for the carboxylic carbon, it is safe to assume that this is a single step reaction. The isotope effects on pKa are expected to be close to the value of 1.0014 determined for benzoic acid. This in mind, changes in the isotope effects have been attributed to changes in solvation. [Pg.334]


See other pages where Neutral solutions chemical reactions is mentioned: [Pg.883]    [Pg.192]    [Pg.215]    [Pg.438]    [Pg.163]    [Pg.2252]    [Pg.372]    [Pg.830]    [Pg.147]    [Pg.583]    [Pg.626]    [Pg.671]    [Pg.739]    [Pg.382]    [Pg.111]    [Pg.170]    [Pg.476]    [Pg.5]    [Pg.15]    [Pg.30]    [Pg.810]    [Pg.142]    [Pg.327]    [Pg.95]    [Pg.115]    [Pg.6]   
See also in sourсe #XX -- [ Pg.32 ]




SEARCH



Chemical reaction solutions

Chemical reactions neutralization

Chemical reactions neutralizing

Neutral solutes

Neutral, solutions neutralization

Neutralization reactions

Neutralizing chemicals

© 2024 chempedia.info