Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solutions chemical reactions

To run the residence time distribution experiments under conditions which would simulate the conditions occurring during chemical reaction, solutions of 15 weight percent and 30 percent polystyrene in benzene as well as pure benzene were used as the fluid medium. The polystyrene used in the RTD experiment was prepared in a batch reactor and had a number average degree of polymerization of 320 and a polydispersity index, DI, of 1.17. [Pg.304]

The benefits from tuning the solvent system can be tremendous. Again, remarkable opportunities exist for the fruitful exploitation of the special properties of supercritical and near-critical fluids as solvents for chemical reactions. Solution properties may be tuned, with thermodynamic conditions or cosolvents, to modify rates, yields, and selectivities, and supercritical fluids offer greatly enhanced mass transfer for heterogeneous reactions. Also, both supercritical fluids and near-critical water can often replace environmentally undesirable solvents or catalysts, or avoid undesirable byproducts. Furthermore, rational design of solvent systems can also modify reactions to facilitate process separations (Eckert and Chandler, 1998). [Pg.74]

We often use solutions to supply the reactants for chemical reactions. Solutions allow the most intimate mixing of the reacting substances at the molecular level, much more than would be possible in solid form. (A practical example is drain cleaner, shown in the photo.) We sometimes adjust the concentrations of solutions to speed up or slow down the rate of a reaction. In this section we study methods for expressing the quantities of the various components present in a given amount of solution. [Pg.103]

A mathematical model may be constructed representing a chemical reaction. Solutions of the mathematical model must be compatible with the observed behavior of this chemical reaction. Furthermore if some other solutions would indicate possible behaviors so far unobserved, of the reaction, experiments maybe designed to experimentally observe them, thus to reinforce the validity of the mathematical model. Dynamical systems such as reactions are modelled by differential equations. The chemical equilibrium states are the stable singular solutions of the mathematical model consisting of a set of differential equations. Depending on the format of these equations solutions vary in a number of possible ways. In addition to these stable singular solutions periodic solutions also appear. Although there are various kinds of oscillatory behavior observed in reactions, these periodic solutions correspond to only some of these oscillations. [Pg.3]

Mass Spectrum Thermal Decomposition and Chemical Reactions. Solutions... [Pg.69]

Chemical reaction Solution of rate equations Optimization for rate parameters Concentration and related data (e.g., electrochemical current, temperature) with time... [Pg.785]

Describe the relationship between the affinity and heat of a chemical reaction. Solution ... [Pg.391]

Admittedly, chemistry can generate fear. That is especially true when you hear your friends talking about their experiences. If your professor has chosen this textbook for your preparative chemistry course, I feel that you are on your way to an enjoyable experience. Sure we talk about atoms, molecules, covalent bonds, and ionic bonds. We talk about chemical reactions, solution chemistry, acids and bases, and gas laws. You will indeed encounter such seemingly ridiculous terms as stoichiometry, the mole, chemical equilibrium, molarity, and oxidation and reduction. You will also encounter things so incredibly small that you will wonder how scientists can even know they exist. [Pg.466]

Although a separation of electronic and nuclear motion provides an important simplification and appealing qualitative model for chemistry, the electronic Sclirodinger equation is still fomiidable. Efforts to solve it approximately and apply these solutions to the study of spectroscopy, stmcture and chemical reactions fonn the subject of what is usually called electronic structure theory or quantum chemistry. The starting point for most calculations and the foundation of molecular orbital theory is the independent-particle approximation. [Pg.31]

This interface is critically important in many applications, as well as in biological systems. For example, the movement of pollutants tln-ough the enviromnent involves a series of chemical reactions of aqueous groundwater solutions with mineral surfaces. Although the liquid-solid interface has been studied for many years, it is only recently that the tools have been developed for interrogating this interface at the atomic level. This interface is particularly complex, as the interactions of ions dissolved in solution with a surface are affected not only by the surface structure, but also by the solution chemistry and by the effects of the electrical double layer [31]. It has been found, for example, that some surface reconstructions present in UHV persist under solution, while others do not. [Pg.314]

To proceed fiirther, to evaluate the standard free energy AG , we need infonnation (experimental or theoretical) about the particular reaction. One source of infonnation is the equilibrium constant for a chemical reaction involving gases. Previous sections have shown how the chemical potential for a species in a gaseous mixture or in a dilute solution (and the corresponding activities) can be defined and measured. Thus, if one can detennine (by some kind of analysis)... [Pg.364]

Cummings P T and Stell G 1984 Statistical mechanical models of chemical reactions analytic solution of models of A + S AS in the Percus-Yevick approximation Mol. Phys. 51 253... [Pg.554]

At higher current densities, the primary electron transfer rate is usually no longer limiting instead, limitations arise tluough the slow transport of reactants from the solution to the electrode surface or, conversely, the slow transport of the product away from the electrode (diffusion overpotential) or tluough the inability of chemical reactions coupled to the electron transfer step to keep pace (reaction overpotential). [Pg.603]

Examples of the lader include the adsorption or desorption of species participating in the reaction or the participation of chemical reactions before or after the electron transfer step itself One such process occurs in the evolution of hydrogen from a solution of a weak acid, HA in this case, the electron transfer from the electrode to die proton in solution must be preceded by the acid dissociation reaction taking place in solution. [Pg.603]

As it has appeared in recent years that many hmdamental aspects of elementary chemical reactions in solution can be understood on the basis of the dependence of reaction rate coefficients on solvent density [2, 3, 4 and 5], increasing attention is paid to reaction kinetics in the gas-to-liquid transition range and supercritical fluids under varying pressure. In this way, the essential differences between the regime of binary collisions in the low-pressure gas phase and tliat of a dense enviromnent with typical many-body interactions become apparent. An extremely useful approach in this respect is the investigation of rate coefficients, reaction yields and concentration-time profiles of some typical model reactions over as wide a pressure range as possible, which pemiits the continuous and well controlled variation of the physical properties of the solvent. Among these the most important are density, polarity and viscosity in a contimiiim description or collision frequency. [Pg.831]

Many additional refinements have been made, primarily to take into account more aspects of the microscopic solvent structure, within the framework of diffiision models of bimolecular chemical reactions that encompass also many-body and dynamic effects, such as, for example, treatments based on kinetic theory [35]. One should keep in mind, however, that in many cases die practical value of these advanced theoretical models for a quantitative analysis or prediction of reaction rate data in solution may be limited. [Pg.845]

Instead of concentrating on the diffiisioii limit of reaction rates in liquid solution, it can be histnictive to consider die dependence of bimolecular rate coefficients of elementary chemical reactions on pressure over a wide solvent density range covering gas and liquid phase alike. Particularly amenable to such studies are atom recombination reactions whose rate coefficients can be easily hivestigated over a wide range of physical conditions from the dilute-gas phase to compressed liquid solution [3, 4]. [Pg.845]

Harris A L, Berg M and Harris C B 1986 Studies of chemical reactivity in the condensed phase. I. The dynamics of iodine photodissociation and recombination on a picosecond time scale and comparison to theories for chemical reactions in solution J. Chem. Phys. 84 788... [Pg.865]

Hynes J T 1985 The theory of reactions in solution Theory of Chemical Reaction Dynamics ed M Baer (Boca Raton, FL CRC Press) pp 171-234... [Pg.869]

Warshel A 1991 Computer Modeling of Chemical Reactions in Enzymes and Solutions (New York Wiley)... [Pg.896]

Vibrational motion is thus an important primary step in a general reaction mechanism and detailed investigation of this motion is of utmost relevance for our understanding of the dynamics of chemical reactions. In classical mechanics, vibrational motion is described by the time evolution and l t) of general internal position and momentum coordinates. These time dependent fiinctions are solutions of the classical equations of motion, e.g. Newton s equations for given initial conditions and I Iq) = Pq. [Pg.1056]

Electrode processes are a class of heterogeneous chemical reaction that involves the transfer of charge across the interface between a solid and an adjacent solution phase, either in equilibrium or under partial or total kinetic control. A simple type of electrode reaction involves electron transfer between an inert metal electrode and an ion or molecule in solution. Oxidation of an electroactive species corresponds to the transfer of electrons from the solution phase to the electrode (anodic), whereas electron transfer in the opposite direction results in the reduction of the species (cathodic). Electron transfer is only possible when the electroactive material is within molecular distances of the electrode surface thus for a simple electrode reaction involving solution species of the fonn... [Pg.1922]


See other pages where Solutions chemical reactions is mentioned: [Pg.39]    [Pg.110]    [Pg.130]    [Pg.39]    [Pg.57]    [Pg.78]    [Pg.39]    [Pg.110]    [Pg.130]    [Pg.39]    [Pg.57]    [Pg.78]    [Pg.215]    [Pg.367]    [Pg.373]    [Pg.204]    [Pg.477]    [Pg.31]    [Pg.314]    [Pg.500]    [Pg.604]    [Pg.887]    [Pg.895]    [Pg.1936]   
See also in sourсe #XX -- [ Pg.283 ]




SEARCH



A Model for Chemical Reactions in Solution

Alkaline solutions chemical reactions

Aqueous solutions chemical reactions

Chemical reaction dynamics in solution

Chemical reaction in aqueous solutions

Chemical reaction solution reactions

Chemical reactions in solution

Chemical reactions solution molarity

Chemical reactions solution stoichiometry

Chemical synthesis solution reaction procedures

Dilution and Chemical Reactions in Solution

Dynamic Behavior of Solutions with Aqueous-Phase Chemical Reactions

Electronic structure and chemical reaction in solution

Exact Solution for Chemical Reactions

Heterogeneous Chemical Reactions in Solutions

Neutral solutions chemical reactions

Solution Formation and Chemical Reactions

Solution chemical reactions and

Solution chemical reactions and diagrammatic approaches

Solution of a Chemical Reaction System

Spectrum Behavior toward Radiation and Chemical Reactions. Solutions

Spectrum Thermal Decomposition and Chemical Reactions. Solutions

Stoichiometry of Chemical Reactions in Solution

The kinetic theory applied to chemical reactions in solutions

Thermodynamic and kinetic characteristics of chemical reactions in solution

Types of Chemical Reactions and Solution Stoichiometry

Using Solutions in Chemical Reactions

What Time Scales Are Involved for Chemical Reactions in Solution

© 2024 chempedia.info