Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neurotransmitters calcium

Abnormalities in calcium or parathyroid hormone homeostasis may be a factor in depression. Significant fluctuations in calcitonin, a calcium-regulating hormone, and low plasma calcium levels during the menstrual cycle may play a part in the etiology of PMS. Calcium influx into brain cells is involved with the release of many neurotransmitters. Calcium supplementation (e.g., 1200-1600 mg/day of calcium carbonate in two divided doses) has been shown to reduce premenstrual symptoms such as anxiety, depression, irritability, mood swings, headache, fluid retention, and cramps. " " Calcium supplementation may help to prevent osteoporosis later in life, and it is a relatively safe and inexpensive treatment. ... [Pg.1475]

Stimulation of the neuron lea ding to electrical activation of the nerve terminal in a physiologically relevant manner should eUcit a calcium-dependent release of the neurotransmitter. Although release is dependent on extracellular calcium, intracellular calcium homeostasis may also modulate the process. Neurotransmitter release that is independent of extracellular calcium is usually artifactual, or in some cases may represent release from a non-neuronal sources such as gha (3). [Pg.517]

A subset of ion channels not gated by traditional neurotransmitters represents another receptor class. These iaclude potassium, calcium, sodium, and cychc adenosiae monophosphate (cAMP)-gated channels (14—16) for which a large number of synthetic molecules exist that alter ceUular function. [Pg.518]

Other agents are also used for the treatment of manic-depressive disorders based on preliminary clinical results (177). The antiepileptic carbamazepine [298-46-4] has been reported in some clinical studies to be therapeutically beneficial in mild-to-moderate manic depression. Carbamazepine treatment is used especially in bipolar patients intolerant to lithium or nonresponders. A majority of Hthium-resistant, rapidly cycling manic-depressive patients were reported in one study to improve on carbamazepine (178). Carbamazepine blocks noradrenaline reuptake and inhibits noradrenaline exocytosis. The main adverse events are those found commonly with antiepileptics, ie, vigilance problems, nystagmus, ataxia, and anemia, in addition to nausea, diarrhea, or constipation. Carbamazepine can be used in combination with lithium. Several clinical studies report that the calcium channel blocker verapamil [52-53-9] registered for angina pectoris and supraventricular arrhythmias, may also be effective in the treatment of acute mania. Its use as a mood stabilizer may be unrelated to its calcium-blocking properties. Verapamil also decreases the activity of several neurotransmitters. Severe manic depression is often treated with antipsychotics or benzodiazepine anxiolytics. [Pg.233]

Nerve growth factor snake venoms zinc, 6, 613 Neurospora crassa calcium transport, 6, 571 cation transport, 6, 559 Neurosporin, 6, 676 Neurotransmitters secretion calcium, 6, 595 Neutral complexes electrical properties, 6, 143 Neutron absorbers... [Pg.172]

Action potentials, self-propagating. Action potentials of smooth muscle differ from the typical nerve action potential in at least three ways. First, the depolarization phases of nearly all smooth muscle action potentials are due to an increase in calcium rather than sodium conductance. Consequently, the rates of rise of smooth action potentials are slow, and the durations are long relative to most neural action potentials. Second, smooth muscle action potentials arise from membrane that is autonomously active and tonically modulated by autonomic neurotransmitters. Therefore, conduction velocities and action potential shapes are labile. Finally, smooth muscle action potentials spread along bundles of myocytes which are interconnected in three dimensions. Therefore the actual spatial patterns of spreading of the action potential vary. [Pg.193]

Important products derived from amino acids include heme, purines, pyrimidines, hormones, neurotransmitters, and biologically active peptides. In addition, many proteins contain amino acids that have been modified for a specific function such as binding calcium or as intermediates that serve to stabilize proteins—generally structural proteins—by subsequent covalent cross-hnk-ing. The amino acid residues in those proteins serve as precursors for these modified residues. Small peptides or peptide-like molecules not synthesized on ribosomes fulfill specific functions in cells. Histamine plays a central role in many allergic reactions. Neurotransmitters derived from amino acids include y-aminobutyrate, 5-hydroxytryptamine (serotonin), dopamine, norepinephrine, and epinephrine. Many drugs used to treat neurologic and psychiatric conditions affect the metabolism of these neurotransmitters. [Pg.264]

Invertebrate prey species contain analogous, but not identical, sites to those considered above. In many phylla, calcium channels play the role normally ascribed to sodium channels in vertebrates. In addition, the peripheral locomotor neurotransmitter is not acetylcholine but amino acids such as gamma amino butyric acid (GABA). In other phylla, the channels which underly locomotion remain poorly understood. [Pg.323]

Because of their strategic localization, astrocytes play a crucial role in maintaining the extracellular ionic homeostasis, provide energetic metabolites to neurons and remove excess of neurotransmitter in schedule with synaptic activity. In addition, the strategic location of astrocytes allows them to carefully monitor and control the level of synaptic activity. Indeed, number of papers during the last 15 years have shown that cultured astrocytes can respond to a variety of neurotransmitters with a variety of different patterns of intracellular calcium increases (Verkhratsky et al. 1998). Later on, studies performed in intact tissue preparations (acute brain slices) further established that the plasma membrane receptors can sense external inputs (such as the spillover of neurotransmitters during intense synaptic activity) and transduce them as intracellular calcium elevations, mostly via release of calcium from internal stores (Dani et al. 1992 Murphy et al. 1993 Porter and McCarthy... [Pg.277]

Augustine GJ (2001) How does calcium trigger neurotransmitter release Curr Opin Neurobiol 11 320-326... [Pg.290]

Thus the neurotransmitter role of ATP is well established in the periphary and also in sensory systems but its importance in the CNS remains to be elucidated (see Burnstock 1996). That requires the development of more specific antagonists and methods of mapping its location. The strong linkage of its P2x receptors to calcium currents may also provide a role for ATP in more long-term effects such as plasticity and neuronal development and death. [Pg.268]

The opiate receptors in the spinal cord are predominantly of the mu and delta type and are found in the C-fibre terminal zone (the substantia gelatinosa) in the superficial dorsal horn. Considerable numbers of ORL-1 receptors are also found in this area. Up to 75% of the opiate receptors are found presynaptically on the C-fibre terminals and when activated inhibit neurotransmitter release. The opening of potassium channels will reduce calcium flux in the terminal and so there will be a resultant decrease in... [Pg.469]

Status epilepticus occurs because the brain fails to stop an isolated seizure. The exact reason for this failure is unknown and probably involves many mechanisms. A seizure is likely to occur due to a mismatch of excitatory and inhibitory neurotransmitters in the brain. The primary excitatory neurotransmitter in the brain is glutamate. Glutamate stimulates postsynaptic N-methyl-D-aspartate (NMDA) receptors in the brain, causing an influx of calcium into the cells and depolarization of the neuron. Sustained depolarization may maintain SE and eventually cause neuronal injury and death.7 The primary... [Pg.462]


See other pages where Neurotransmitters calcium is mentioned: [Pg.716]    [Pg.716]    [Pg.533]    [Pg.449]    [Pg.156]    [Pg.218]    [Pg.284]    [Pg.279]    [Pg.280]    [Pg.311]    [Pg.552]    [Pg.838]    [Pg.928]    [Pg.1282]    [Pg.1303]    [Pg.1303]    [Pg.1304]    [Pg.7]    [Pg.12]    [Pg.64]    [Pg.431]    [Pg.17]    [Pg.323]    [Pg.17]    [Pg.20]    [Pg.185]    [Pg.274]    [Pg.60]    [Pg.170]    [Pg.266]    [Pg.444]    [Pg.515]    [Pg.613]    [Pg.83]    [Pg.190]    [Pg.268]    [Pg.354]    [Pg.36]   
See also in sourсe #XX -- [ Pg.595 ]

See also in sourсe #XX -- [ Pg.595 ]

See also in sourсe #XX -- [ Pg.6 , Pg.595 ]




SEARCH



Calcium neurotransmitter release

Neurotransmitter system calcium regulation

© 2024 chempedia.info