Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Network elastic modulus

Balancing this network elastic modulus in the intermediate regime [Eq. (7.88)] with the osmotic pressure [Eq. (7.86)] produces the expression for equilibrium swelling in the intermediate regime ... [Pg.279]

Langley, N.R. and Polmanteer, K.E., Relation of elastic modulus to crosslink and entanglement concentrations in rubber networks. J. Polym. Sci. Polym. Phys. Ed., 12(6), 1023-1034 (1974). [Pg.708]

To understand the global mechanical and statistical properties of polymeric systems as well as studying the conformational relaxation of melts and amorphous systems, it is important to go beyond the atomistic level. One of the central questions of the physics of polymer melts and networks throughout the last 20 years or so dealt with the role of chain topology for melt dynamics and the elastic modulus of polymer networks. The fact that the different polymer strands cannot cut through each other in the... [Pg.493]

The parameters which characterize the thermodynamic equilibrium of the gel, viz. the swelling degree, swelling pressure, as well as other characteristics of the gel like the elastic modulus, can be substantially changed due to changes in external conditions, i.e., temperature, composition of the solution, pressure and some other factors. The changes in the state of the gel which are visually observed as volume changes can be both continuous and discontinuous [96], In principle, the latter is a transition between the phases of different concentration of the network polymer one of which corresponds to the swollen gel and the other to the collapsed one. [Pg.111]

The effect of the network density on the polyelectrolyte hydrogel elasticity can be understood taking into account the fact that the elastic modulus is closely connected with the swelling pressure (see, for example, Refs. [20, 115]) ... [Pg.117]

The SAH network parameters can be determined from the elastic modulus and the equilibrium swelling however, there are only a few examples of this approach. [Pg.119]

To determine the crosslinking density from the equilibrium elastic modulus, Eq. (3.5) or some of its modifications are used. For example, this analysis has been performed for the PA Am-based hydrogels, both neutral [18] and polyelectrolyte [19,22,42,120,121]. For gels obtained by free-radical copolymerization, the network densities determined experimentally have been correlated with values calculated from the initial concentration of crosslinker. Figure 1 shows that the experimental molecular weight between crosslinks considerably exceeds the expected value in a wide range of monomer and crosslinker concentrations. These results as well as other data [19, 22, 42] point to various imperfections of the PAAm network structure. [Pg.119]

The elastic modulus (G ) of MP, BCAS, and BLG5 rapidly rose to plateaus that corresponded to different G saturations (Gjat) (Table 2). MP and BCAS coagula showed the more important Gsat value (142 N/m ), meaning that the emulsions stabilized by skim milk proteins (mainly casein micelles) and 6-casein formed the coagula with the strongest protein network. [Pg.279]

Elastic Modulus, Network Structure, and Ultimate Tensile Properties of Single-Phase Polyurethane Elastomers... [Pg.419]

Ronca and Allegra (12) and Flory ( 1, 2) assume explicitly in their new rubber elasticity theory that trapped entanglements make no contribution to the equilibrium elastic modulus. It is proposed that chain entangling merely serves to suppress junction fluctuations at small deformations, thereby making the network deform affinely at small deformations. This means that the limiting value of the front factor is one for complete suppression of junction fluctuations. [Pg.440]

The two-network method has been carefully examined. All the previous two-network results were obtained in simple extension for which the Gaussian composite network theory was found to be inadequate. Results obtained on composite networks of 1,2-polybutadiene for three different types of strain, namely equibiaxial extension, pure shear, and simple extension, are discussed in the present paper. The Gaussian composite network elastic free energy relation is found to be adequate in equibiaxial extension and possibly pure shear. Extrapolation to zero strain gives the same result for all three types of strain The contribution from chain entangling at elastic equilibrium is found to be approximately equal to the pseudo-equilibrium rubber plateau modulus and about three times larger than the contribution from chemical cross-links. [Pg.449]

Rubber Elasticity Modulus of Interpenetrating Heteropolymer Networks... [Pg.59]

This is a theoretical study on the structure and modulus of a composite polymeric network formed by two intermeshing co-continuous networks of different chemistry, which interact on a molecular level. The rigidity of this elastomer is assumed to increase with the number density of chemical crosslinks and trapped entanglements in the system. The latter quantity is estimated from the relative concentration of the individual components and their ability to entangle in the unmixed state. The equilibrium elasticity modulus is then calculated for both the cases of a simultaneous and sequential interpenetrating polymer network. [Pg.59]

This is a theoretical study on the entanglement architecture and mechanical properties of an ideal two-component interpenetrating polymer network (IPN) composed of flexible chains (Fig. la). In this system molecular interaction between different polymer species is accomplished by the simultaneous or sequential polymerization of the polymeric precursors [1 ]. Chains which are thermodynamically incompatible are permanently interlocked in a composite network due to the presence of chemical crosslinks. The network structure is thus reinforced by chain entanglements trapped between permanent junctions [2,3]. It is evident that, entanglements between identical chains lie further apart in an IPN than in a one-component network (Fig. lb) and entanglements associating heterogeneous polymers are formed in between homopolymer junctions. In the present study the density of the various interchain associations in the composite network is evaluated as a function of the properties of the pure network components. This information is used to estimate the equilibrium rubber elasticity modulus of the IPN. [Pg.59]

Simultaneous IPN. According to the statistical theory of rubber elasticity, the elasticity modulus (Eg), a measure of the material rigidity, is proportional to the concentration of elastically active segments (Vg) in the network [3,4]. For negligible perturbation of the strand length at rest due to crosslinking (a reasonable assumption for the case of a simultaneous IPN), the modulus is given by ... [Pg.62]


See other pages where Network elastic modulus is mentioned: [Pg.16]    [Pg.16]    [Pg.49]    [Pg.253]    [Pg.260]    [Pg.510]    [Pg.31]    [Pg.497]    [Pg.498]    [Pg.102]    [Pg.103]    [Pg.104]    [Pg.107]    [Pg.108]    [Pg.117]    [Pg.118]    [Pg.139]    [Pg.144]    [Pg.612]    [Pg.613]    [Pg.942]    [Pg.944]    [Pg.29]    [Pg.169]    [Pg.317]    [Pg.11]    [Pg.365]    [Pg.258]    [Pg.54]    [Pg.157]    [Pg.162]    [Pg.38]    [Pg.228]    [Pg.199]    [Pg.182]   
See also in sourсe #XX -- [ Pg.344 ]




SEARCH



Elastic network

Elasticity modulus

Network elasticity

Network modulus

© 2024 chempedia.info