Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Negative mixture

In order to obtain a complete battery, three layers (negative mixture powder, electrolyte powder, positive mixture powder) are pressed together... [Pg.544]

Here A/f is the mixture enthalpy [J kg ] defined with the air temperature, T , and pressure, p, as the reference state, and emission from a liquefied gas storage therefore results in negative mixture enthalpy A// < 0. The symbols (M, M ) and (c, cp c") refer to molar... [Pg.409]

Even if values of AG are negative, mixtures are not necessarily miscible at all compositions. It is possible that such mixtures can achieve a lower total free energy by undergoing phase separation to give two phases of greater stability. [Pg.72]

Curve c represents an intermediate situation in which Xab is sufficiently small that AG is always negative but the curve has points of inflexion. Despite values of AG being negative, mixtures with compositions between those at which a... [Pg.72]

As early as 1969, Wlieeler and Widom [73] fomuilated a simple lattice model to describe ternary mixtures. The bonds between lattice sites are conceived as particles. A bond between two positive spins corresponds to water, a bond between two negative spins corresponds to oil and a bond coimecting opposite spins is identified with an amphiphile. The contact between hydrophilic and hydrophobic units is made infinitely repulsive hence each lattice site is occupied by eitlier hydrophilic or hydrophobic units. These two states of a site are described by a spin variable s., which can take the values +1 and -1. Obviously, oil/water interfaces are always completely covered by amphiphilic molecules. The Hamiltonian of this Widom model takes the form... [Pg.2379]

The fixed plate is now a negative , for those patches on which most light fell are black. The process is reversed in printing to make the positive —the printing paper having a covering of silver chloride or bromide or a mixture of the two. This, in turn, is developed and fixed as was the plate or film. [Pg.428]

The acetone test reagent consists of a 0 1 per cent, solution of 2 4-dinitro-phenylhydrazine and is prepared as follows Dissolve 0-25 g. of 2 4-dinitrophenyl-hydrazine in 60 ml. of water and 42 ml. of concentrated hydrochloric acid by warming on a water bath cool the clear yellow solution and dilute to 250 ml. with water. The acetone test is considered negative when 5 ml. of the reagent and 4-5 drops of the distillate give no cloudiness or precipitate of acetone 2 4-dinitro-phenylhydrazone within 30 seconds. After a negative test is obtained, it is stron y recommended that the mixture in the flask be refluxed for 5-10 minutes with complete condensation and then to collect a few drops of distillate for another test. If no acetone is now detected, the reduction is complete. [Pg.884]

Place 35 ml. of a M solution of aluminium tsopropoxide or 7 g. of solid aluminium tsopropoxide, 450 ml. of dry isopropyl alcohol and 21 g. of purified benzaldehyde (Section IV,115) in a 1 litre round-bottomed flask. Fit a short reflux condenser (no water in the cooling jacket) or better a Hahn condenser (2) (containing a 1 cm. layer of ethyl alcohol in the iimer tube) to the flask and arrange for slow distillation from a water bath at the rate of 3-6 drops per minute. Continue the heating until a negative test for acetone is obtained after 5 minutes of total reflux (6-9 hours) if the volume of the mixture falls below 200 ml. during the reduction, add more isopropyl alcohol. Remove the reflux or Hahn condenser and distil off (Fig. II, 13, 3) most of the isopropyl alcohol under atmospheric pressure from a suitable oil bath. Hydrolyse the... [Pg.884]

Recovery of the wopropyl alcohol. It is not usually economical to recover the isopropyl alcohol because of its lo v cost. However, if the alcohol is to be recovered, great care must be exercised particularly if it has been allowed to stand for several days peroxides are readily formed in the impure acetone - isopropyl alcohol mixtures. Test first for peroxides by adding 0-6 ml. of the isopropyl alcohol to 1 ml. of 10 per cent, potassium iodide solution acidified with 0-6 ml. of dilute (1 5) hydrochloric acid and mixed with a few drops of starch solution if a blue (or blue-black) coloration appears in one minute, the test is positive. One convenient method of removing the peroxides is to reflux each one litre of recovered isopropyl alcohol with 10-15 g. of solid stannous chloride for half an hour. Test for peroxides with a portion of the cooled solution if iodine is liberated, add further 5 g. portions of stannous chloride followed by refluxing for half-hour periods until the test is negative. Then add about 200 g. of quicklime, reflux for 4 hours, and distil (Fig. II, 47, 2) discard the first portion of the distillate until the test for acetone is negative (Crotyl Alcohol, Note 1). Peroxides generally redevelop in tliis purified isopropyl alcohol in several days. [Pg.886]

Place 2 ml. of the periodic acid reagent in a small test tube, add one drop (no more—otherwise the silver iodate, if formed, will fail to precipitate) of concentrated nitric acid, and shake well. Add one drop or a small crystal of the compound to be tested, shake the mixture for 15-20 seconds, and then add 1-2 drops of 3 per cent, silver nitrate solution. The instantaneous formation of a white precipitate of silver iodate is a positive test. Failure to form a precipitate, or the appearance of a brown precipitate which redissolves on shaking, constitutes a negative test. [Pg.1070]

Thus if a mixture containing alanine aspartic acid and lysine is subjected to electrophoresis m a buffer that matches the isoelectric point of alanine (pH 6 0) aspartic acid (pi = 2 8) migrates toward the positive electrode alanine remains at the origin and lysine (pi =9 7) migrates toward the negative elec trode (Figure 27 3b)... [Pg.1120]

Mixtures of trichloroacetate and dichloroacetate are analyzed by selecting an initial potential at which only the more easily reduced trichloroacetate is reduced. When its electrolysis is complete, the potential is switched to a more negative potential at which dichloroacetate is reduced. The total charge for the first electrolysis is used to determine the amount of trichloroacetate, and the difference in total charge between the first and second electrolyses gives the amount of dichloroacetate. [Pg.503]

By passing a continuous flow of solvent (admixed with a matrix material) from an LC column to a target area on the end of a probe tip and then bombarding the target with fast atoms or ions, secondary positive or negative ions are ejected from the surface of the liquid. These ions are then extracted into the analyzer of a mass spectrometer for measurement of a mass spectrum. As mixture components emerge from the LC column, their mass spectra are obtained. [Pg.86]

Since the 0 s are fractions, the logarithms in Eq. (8.38) are less than unity and AGj is negative for all concentrations. In the case of athermal mixtures entropy considerations alone are sufficient to account for polymer-solvent miscibility at all concentrations. Exactly the same is true for ideal solutions. As a matter of fact, it is possible to regard the expressions for AS and AGj for ideal solutions as special cases of Eqs. (8.37) and (8.38) for the situation where n happens to equal unity. The following example compares values for ASj for ideal and Flory-Huggins solutions to examine quantitatively the effect of variations in n on the entropy of mixing. [Pg.517]

The quantity x is called the Flory-Huggins interaction parameter It is zero for athermal mixtures, positive for endothermic mixing, and negative for exothermic mixing. These differences in sign originate from Eq. (8.39) and reaction (8.A). [Pg.523]


See other pages where Negative mixture is mentioned: [Pg.1054]    [Pg.831]    [Pg.452]    [Pg.1054]    [Pg.831]    [Pg.452]    [Pg.631]    [Pg.632]    [Pg.1094]    [Pg.1877]    [Pg.1914]    [Pg.1961]    [Pg.2098]    [Pg.2379]    [Pg.2525]    [Pg.2795]    [Pg.441]    [Pg.350]    [Pg.7]    [Pg.173]    [Pg.188]    [Pg.935]    [Pg.936]    [Pg.937]    [Pg.1061]    [Pg.11]    [Pg.65]    [Pg.288]    [Pg.1121]    [Pg.597]    [Pg.3]    [Pg.129]    [Pg.529]    [Pg.533]    [Pg.149]    [Pg.362]    [Pg.156]    [Pg.199]   
See also in sourсe #XX -- [ Pg.15 , Pg.65 ]




SEARCH



© 2024 chempedia.info