Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Turbulent flow Navier-Stokes equation

If these assumptions are satisfied then the ideas developed earlier about the mean free path can be used to provide qualitative but useful estimates of the transport properties of a dilute gas. While many varied and complicated processes can take place in fluid systems, such as turbulent flow, pattern fonnation, and so on, the principles on which these flows are analysed are remarkably simple. The description of both simple and complicated flows m fluids is based on five hydrodynamic equations, die Navier-Stokes equations. These equations, in trim, are based upon the mechanical laws of conservation of particles, momentum and energy in a fluid, together with a set of phenomenological equations, such as Fourier s law of themial conduction and Newton s law of fluid friction. When these phenomenological laws are used in combination with the conservation equations, one obtains the Navier-Stokes equations. Our goal here is to derive the phenomenological laws from elementary mean free path considerations, and to obtain estimates of the associated transport coefficients. Flere we will consider themial conduction and viscous flow as examples. [Pg.671]

As of this writing, the only practical approach to solving turbulent flow problems is to use statistically averaged equations governing mean flow quantities. These equations, which are usually referred to as the Reynolds equations of motion, are derived by Reynold s decomposition of the Navier-Stokes equations (18). The randomly changing variables are represented by a time mean and a fluctuating part ... [Pg.101]

Before discussing the on.set, and nature, of fluid turbulence, it is convenient to first recast the Navier-Stokes equations into a dimensionless form, a trick first used by Reynolds in his pioneering experimental work in the 1880 s. In this form, the Navier-Stokes equations depend on a single dimensionless number called Reynolds number, and fluid behavior from smooth, or laminar, flow to chaos, or turbulence,... [Pg.468]

In Spite of the existence of numerous experimental and theoretical investigations, a number of principal problems related to micro-fluid hydrodynamics are not well-studied. There are contradictory data on the drag in micro-channels, transition from laminar to turbulent flow, etc. That leads to difficulties in understanding the essence of this phenomenon and is a basis for questionable discoveries of special microeffects (Duncan and Peterson 1994 Ho and Tai 1998 Plam 2000 Herwig 2000 Herwig and Hausner 2003 Gad-el-Hak 2003). The latter were revealed by comparison of experimental data with predictions of a conventional theory based on the Navier-Stokes equations. The discrepancy between these data was interpreted as a display of new effects of flow in micro-channels. It should be noted that actual conditions of several experiments were often not identical to conditions that were used in the theoretical models. For this reason, the analysis of sources of disparity between the theory and experiment is of significance. [Pg.104]

Wu and Cheng (2003) measured the friction factor of laminar flow of de-ionized water in smooth silicon micro-channels of trapezoidal cross-section with hydraulic diameters in the range of 25.9 to 291.0 pm. The experimental data were found to be in agreement within 11% with an existing theoretical solution for an incompressible, fully developed, laminar flow in trapezoidal channels under the no-slip boundary condition. It is confirmed that Navier-Stokes equations are still valid for the laminar flow of de-ionized water in smooth micro-channels having hydraulic diameter as small as 25.9 pm. For smooth channels with larger hydraulic diameters of 103.4-103.4-291.0pm, transition from laminar to turbulent flow occurred at Re = 1,500-2,000. [Pg.109]

Turbulent inlet conditions for LES are difficult to obtain since a time-resolved flow description is required. The best solution is to use periodic boundary conditions when it is possible. For the remaining cases, there are algorithms for simulation of turbulent eddies that fit the theoretical turbulent energy distribution. These simulated eddies are not a solution of the Navier-Stokes equations, and the inlet boundary must be located outside the region of interest to allow the flow to adjust to the correct physical properties. [Pg.339]

An Eulerian-Eulerian (EE) approach was adopted to simulate the dispersed gas-liquid flow. The EE approach treats both the primary liquid phase and the dispersed gas phase as interpenetrating continua, and solves a set of Navier-Stokes equations for each phase. Velocity inlet and outlet boundary conditions were employed in the liquid phase, whilst the gas phase conditions consisted of a velocity inlet and pressure outlet. Turbulence within the system was account for with the Standard k-e model, implemented on a per-phase basis, similar to the recent work of Bertola et. al.[4]. A more detailed description of the computational setup of the EE method can be found in Pareek et. al.[5]. [Pg.670]

Some early spray models were based on the combination of a discrete droplet model with a multidimensional gas flow model for the prediction of turbulent combustion of liquid fuels in steady flow combustors and in direct injection engines. In an improved spray model,[438] the full Reynolds-averaged Navier-Stokes equations were... [Pg.345]

At high Reynolds number, the velocity U(x, t) is a random field, i.e., for fixed time t = t the function U(x, D varies randomly with respect to x. This behavior is illustrated in Fig. 2.1 for a homogeneous turbulent flow. Likewise, for fixed x = x lJ(x. t) is a random process with respect to t. This behavior is illustrated in Fig. 2.2. The meaning of random in the context of turbulent flows is simply that a variable may have a different value each time an experiment is repeated under the same set of flow conditions (Pope 2000). It does not imply, for example, that the velocity field evolves erratically in time and space in an unpredictable fashion. Indeed, due to the fact that it must satisfy the Navier-Stokes equation, (1.27), U(x, t) is differentiable in both time and space and thus is relatively smooth. ... [Pg.46]

In Section 3.3, we will use (3.16) with the Navier-Stokes equation and the scalar transport equation to derive one-point transport equations for selected scalar statistics. As seen in Chapter 1, for turbulent reacting flows one of the most important statistics is the mean chemical source term, which is defined in terms of the one-point joint composition PDF +(+x, t) by... [Pg.86]

This chapter is devoted to methods for describing the turbulent transport of passive scalars. The basic transport equations resulting from Reynolds averaging have been derived in earlier chapters and contain unclosed terms that must be modeled. Thus the available models for these terms are the primary focus of this chapter. However, to begin the discussion, we first review transport models based on the direct numerical simulation of the Navier-Stokes equation, and other models that do not require one-point closures. The presentation of turbulent transport models in this chapter is not intended to be comprehensive. Instead, the emphasis is on the differences between particular classes of models, and how they relate to models for turbulent reacting flow. A more detailed discussion of turbulent-flow models can be found in Pope (2000). For practical advice on choosing appropriate models for particular flows, the reader may wish to consult Wilcox (1993). [Pg.119]

For homogeneous turbulent flows (no walls, periodic boundary conditions, zero mean velocity), pseudo-spectral methods are usually employed due to their relatively high accuracy. In order to simulate the Navier-Stokes equation,... [Pg.120]

The "correlative" multi-scale CFD, here, refers to CFD with meso-scale models derived from DNS, which is the way that we normally follow when modeling turbulent single-phase flows. That is, to start from the Navier-Stokes equations and perform DNS to provide the closure relations of eddy viscosity for LES, and thereon, to obtain the larger scale stress for RANS simulations (Pope, 2000). There are a lot of reports about this correlative multi-scale CFD for single-phase turbulent flows. Normally, clear scale separation should first be distinguished for the correlative approach, since the finer scale simulation need clear specification of its boundary. In this regard, the correlative multi-scale CFD may be viewed as a "multilevel" approach, in the sense that each span of modeled scales is at comparatively independent level and the finer level output is interlinked with the coarser level input in succession. [Pg.12]

It is assumed that the instantaneous Navier-Stokes equations for turbulent flows have the exact form of those for laminar flows. From the Reynolds decomposition, any instantaneous variable, (j>, can be divided into a time-averaged quantity and a fluctuating part as... [Pg.175]

Let us deal with the equation of motion for turbulent flow. In the case of laminar flow under the condition of constant density and constant viscosity, the equation of motion is expressed by the Navier-Stokes equation as... [Pg.96]

The difference between this equation for turbulent flow and the Navier-Stokes equation for laminar flow is the Reynolds stress/turbulent stress term —pujuj appears in the equation of motion for turbulent flow. This equation of motion for turbulent flow involves non-linear terms, and it is impossible to be solved analytically. In order to solve the equation in the same way as the Navier-Stokes equation, the Reynolds stress or fluctuating velocity must be known or calculated. Two methods have been adopted to avoid this problem—phenomenological method and statistical method. In the phenomenological method, the Reynolds stress is considered to be proportional to the average velocity gradient and the proportional coefficient is considered to be turbulent viscosity or mixing length ... [Pg.97]


See other pages where Turbulent flow Navier-Stokes equation is mentioned: [Pg.171]    [Pg.89]    [Pg.92]    [Pg.98]    [Pg.101]    [Pg.101]    [Pg.672]    [Pg.566]    [Pg.363]    [Pg.468]    [Pg.153]    [Pg.29]    [Pg.131]    [Pg.13]    [Pg.314]    [Pg.317]    [Pg.9]    [Pg.329]    [Pg.357]    [Pg.119]    [Pg.121]    [Pg.311]    [Pg.288]    [Pg.192]    [Pg.759]    [Pg.533]    [Pg.236]    [Pg.46]    [Pg.49]    [Pg.164]    [Pg.244]    [Pg.97]    [Pg.566]   
See also in sourсe #XX -- [ Pg.52 , Pg.53 ]




SEARCH



Equation Navier-Stokes

Flow equations

Navier equations

Navier-Stokes

Stokes equation

Stokes flow

Stokes turbulent flow

Turbulence flow

Turbulent flow

Turbulent flow Turbulence

Turbulent flow equations

© 2024 chempedia.info