Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nature of probes

Simulated profiles are shown in Figure 12b for the case where the tip is positioned between two closely spaced pores. Here the tip and its insulating sheath partially block the pore, effectively reducing the diffusive flux of the electroactive molecule through the pore. The simulated profiles illustrate the complex nature of probing mass transport across membranes at small tip-to-sample separations. [Pg.365]

Nature of probe Electronic surface states Local Van der Waals forces Electromagnetic Held near surface... [Pg.501]

In Surface Analysis by Laser Ionization (SALI), a probe beam such as an ion beam, electron beam, or laser is directed onto a surfiice to remove a sample of material. An untuned, high-intensity laser beam passes parallel and close to but above the sur-fiice. The laser has sufficient intensity to induce a high degree of nonresonant, and hence nonselective, photoionization of the vaporized sample of material within the laser beam. The nonselectively ionized sample is then subjected to mass spectral analysis to determine the nature of the unknown species. SALI spectra accurately reflect the surface composition, and the use of time-of-flight mass spectrometers provides fast, efficient and extremely sensitive analysis. [Pg.42]

The three-dimensional, digital nature of SFM and STM data makes the instruments excellent high-resolution profilometers. Like traditional stylus or optical profilometers, scanning probe microscopes provide reliable height information. However, traditional profilometers scan in one dimension only and cannot match SPM s height and lateral resolution. [Pg.92]

Scanning probe microscopy is a forefront technology that is well established for research in surface physics. STM and SFM are now emerging ftom university laboratories and gaining acceptance in several industrial markets. For topographic analysis and profilometry, the resolution and three-dimensional nature of the data is... [Pg.97]

Nearly all these techniques involve interrogation of the surface with a particle probe. The function of the probe is to excite surface atoms into states giving rise to emission of one or more of a variety of secondary particles such as electrons, photons, positive and secondary ions, and neutrals. Because the primary particles used in the probing beam can also be electrons or photons, or ions or neutrals, many separate techniques are possible, each based on a different primary-secondary particle combination. Most of these possibilities have now been established, but in fact not all the resulting techniques are of general application, some because of the restricted or specialized nature of the information obtained and others because of difficult experimental requirements. In this publication, therefore, most space is devoted to those surface analytical techniques that are widely applied and readily available commercially, whereas much briefer descriptions are given of the many others the use of which is less common but which - in appropriate circumstances, particularly in basic research - can provide vital information. [Pg.2]

The limitations of SIMS - some inherent in secondary ion formation, some because of the physics of ion beams, and some because of the nature of sputtering - have been mentioned in Sect. 3.1. Sputtering produces predominantly neutral atoms for most of the elements in the periodic table the typical secondary ion yield is between 10 and 10 . This leads to a serious sensitivity limitation when extremely small volumes must be probed, or when high lateral and depth resolution analyses are needed. Another problem arises because the secondary ion yield can vary by many orders of magnitude as a function of surface contamination and matrix composition this hampers quantification. Quantification can also be hampered by interferences from molecules, molecular fragments, and isotopes of other elements with the same mass as the analyte. Very high mass-resolution can reject such interferences but only at the expense of detection sensitivity. [Pg.122]

Raman spectroscopy has provided information on catalytically active transition metal oxide species (e. g. V, Nb, Cr, Mo, W, and Re) present on the surface of different oxide supports (e.g. alumina, titania, zirconia, niobia, and silica). The structures of the surface metal oxide species were reflected in the terminal M=0 and bridging M-O-M vibrations. The location of the surface metal oxide species on the oxide supports was determined by monitoring the specific surface hydroxyls of the support that were being titrated. The surface coverage of the metal oxide species on the oxide supports could be quantitatively obtained, because at monolayer coverage all the reactive surface hydroxyls were titrated and additional metal oxide resulted in the formation of crystalline metal oxide particles. The nature of surface Lewis and Bronsted acid sites in supported metal oxide catalysts has been determined by adsorbing probe mole-... [Pg.261]

The details of proton-transfer processes can also be probed by examination of solvent isotope effects, for example, by comparing the rates of a reaction in H2O versus D2O. The solvent isotope effect can be either normal or inverse, depending on the nature of the proton-transfer process in the reaction mechanism. D3O+ is a stronger acid than H3O+. As a result, reactants in D2O solution are somewhat more extensively protonated than in H2O at identical acid concentration. A reaction that involves a rapid equilibrium protonation will proceed faster in D2O than in H2O because of the higher concentration of the protonated reactant. On the other hand, if proton transfer is part of the rate-determining step, the reaction will be faster in H2O than in D2O because of the normal primary kinetic isotope effect of the type considered in Section 4.5. [Pg.232]

Let us now return to the question of solvolysis and how it relates to the stracture under stable-ion conditions. To relate the structural data to solvolysis conditions, the primary issues that must be considered are the extent of solvent participation in the transition state and the nature of solvation of the cationic intermediate. The extent of solvent participation has been probed by comparison of solvolysis characteristics in trifluoroacetic acid with the solvolysis in acetic acid. The exo endo reactivity ratio in trifluoroacetic acid is 1120 1, compared to 280 1 in acetic acid. Whereas the endo isomer shows solvent sensitivity typical of normal secondary tosylates, the exx> isomer reveals a reduced sensitivity. This indicates that the transition state for solvolysis of the exo isomer possesses a greater degree of charge dispersal, which would be consistent with a bridged structure. This fact, along with the rate enhancement of the exo isomer, indicates that the c participation commences prior to the transition state being attained, so that it can be concluded that bridging is a characteristic of the solvolysis intermediate, as well as of the stable-ion structure. ... [Pg.332]

Surface analysis has made enormous contributions to the field of adhesion science. It enabled investigators to probe fundamental aspects of adhesion such as the composition of anodic oxides on metals, the surface composition of polymers that have been pretreated by etching, the nature of reactions occurring at the interface between a primer and a substrate or between a primer and an adhesive, and the orientation of molecules adsorbed onto substrates. Surface analysis has also enabled adhesion scientists to determine the mechanisms responsible for failure of adhesive bonds, especially after exposure to aggressive environments. The objective of this chapter is to review the principals of surface analysis techniques including attenuated total reflection (ATR) and reflection-absorption (RAIR) infrared spectroscopy. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and secondary ion mass spectrometry (SIMS) and to present examples of the application of each technique to important problems in adhesion science. [Pg.243]

First, a simple model which incorporates only the zinc chloride and the chloromethylzinc chloride is considered to probe the nature of the Lewis acid activation. [Pg.143]

To date, most studies of ionic liquids have used a small set of ionic liquids and have been based on the idea that, if the response of a particular probe molecule or reaction is like that in some known molecular solvent, then it can be said that the polarities of the ionic liquid and the molecular solvent are the same. This may not necessarily be the case. Only systematic investigations will show whether this is tme, and only when a wide range of ionic liquids with a wide range of different solvent polarity probes have been studied will we be able to make any truly general statements about the polarity of ionic liquids. Indeed, in our attempts to understand the nature of solvent effects in ionic liquids, we will probably have to refine our notion of polarity itself However, it is possible to draw some tentative general conclusions. [Pg.102]

Probing, driving a rod or pipe into the soil and measuring the penetration resistance, obtains initial subsurface information. This is a low-cost method, but in general it is likely to supply inadequate information about subsurface conditions, especially on the depth and nature of bedrock. [Pg.273]


See other pages where Nature of probes is mentioned: [Pg.456]    [Pg.116]    [Pg.17]    [Pg.245]    [Pg.271]    [Pg.1394]    [Pg.248]    [Pg.456]    [Pg.116]    [Pg.17]    [Pg.245]    [Pg.271]    [Pg.1394]    [Pg.248]    [Pg.827]    [Pg.432]    [Pg.542]    [Pg.423]    [Pg.1264]    [Pg.1299]    [Pg.1391]    [Pg.1538]    [Pg.1868]    [Pg.2415]    [Pg.256]    [Pg.442]    [Pg.312]    [Pg.131]    [Pg.397]    [Pg.299]    [Pg.355]    [Pg.2]    [Pg.414]    [Pg.231]    [Pg.98]    [Pg.545]    [Pg.112]    [Pg.212]    [Pg.104]    [Pg.175]    [Pg.32]    [Pg.98]   


SEARCH



© 2024 chempedia.info