Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Natural rubber /EPDM

Plastics, such as PE, PP, polystyrene (PS), polyester, and nylon, etc., and elastomers such as natural rubber, EPDM, butyl rubber, NR, and styrene butadiene rubber (SBR), etc., are usually used as blend components in making thermoplastic elastomers. Such blends have certain advantages over the other type of TPEs. The desired properties are achieved by suitable elasto-mers/plastic selection and their proportion in the blend. [Pg.653]

Figure 13 Location of carbon black in a blend of chlorobutyl and natural rubber EPDM. Figure 13 Location of carbon black in a blend of chlorobutyl and natural rubber EPDM.
The more serious cause of deterioration in rubbers is its reaction with atmospheric oxygen. This is possible because rubber is a diene polymer and some, such as natural rubber, EPDM, SBR, nitrile rubber, and butyl rubber, have olefinic double bonds in their structure. Much research work is being done on the oxidative degradation of unvulcanized rubbers, but this is not relevant to the resistance of vulcanized rubbers in storage or in service as their aging behaviors differ widely. Unvulcanized rubber compound has to be vulcanized in order to produce usable products. The nature of the cross-link produced varies considerably, and this can affect the balance of chemical and particularly of physical properties of the vulcanizates. [Pg.131]

Suitable polymers bromobutyl rubber, chlorobutyl rubber, ionomers, natural rubber, EPDM, NBR, PA12, PP, PS, SBR ... [Pg.173]

TPEs from blends of rubber and plastics constitute an important category of TPEs. These can be prepared either by the melt mixing of plastics and rubbers in an internal mixer or by solvent casting from a suitable solvent. The commonly used plastics and rubbers include polypropylene (PP), polyethylene (PE), polystyrene (PS), nylon, ethylene propylene diene monomer rubber (EPDM), natural rubber (NR), butyl rubber, nitrile rubber, etc. TPEs from blends of rubbers and plastics have certain typical advantages over the other TPEs. In this case, the required properties can easily be achieved by the proper selection of rubbers and plastics and by the proper change in their ratios. The overall performance of the resultant TPEs can be improved by changing the phase structure and crystallinity of plastics and also by the proper incorporation of suitable fillers, crosslinkers, and interfacial agents. [Pg.634]

In all the compositions, the DCP-cured blends showed better properties than the corresponding unvulcanized samples. Choudhary et al. [30] further demonstrated the use of EPDM, chlorinated PE, chlorosulfo-nated PE, maleic anhydride modified polyethylene, and blends of epoxidized natural rubber-sulfonated EPDM as compatibilizers in NR-LDPE (low-density PE) blends. [Pg.640]

ATBN - amine terminated nitrile rubber X - Flory Huggins interaction parameter CPE - carboxylated polyethylene d - width at half height of the copolymer profile given by Kuhn statistical segment length DMAE - dimethyl amino ethanol r - interfacial tension reduction d - particle size reduction DSC - differential scanning calorimetry EMA - ethylene methyl acrylate copolymer ENR - epoxidized natural rubber EOR - ethylene olefin rubber EPDM - ethylene propylene diene monomer EPM - ethylene propylene monomer rubber EPR - ethylene propylene rubber EPR-g-SA - succinic anhydride grafted ethylene propylene rubber... [Pg.682]

Chlorosulfoneted Polyethylene Potych/oroprene EPDM Butyl Rubber Natural Rubber SBR... [Pg.426]

FIGURE 5.15 Failure envelope of various mixes A, natural rubber-polyethylene (NR-PE) vul-canizate (peroxide cured) , NR-PE vulcanizate (sulfur cured) , NR-PE vulcanizate with CPE as compati-bilizer V, EPDM-PE vulcanizate o, EPDM-PP vulcanizate (sulfur cured) NR-ENR-PE -PE. (Erom Roy Choudhury, N. and Bhowmick, A.K., J. Mat. Sci., 25, 161, 1990. With permission from Chapman HaU.)... [Pg.139]

In one of the first reports on fiber reinforcement of rubber, natural rubber (NR) was used by Collier [9] as the rubber matrix, which was reinforced using short cotton fibers. Some of the most commonly used rubber matrices for fiber reinforcement are NR, ethylene-propylene-diene monomer (EPDM) rubber, styrene-butadiene rubber (SBR), polychloroprene rubber, and nitrile rubber [10-13]. These rubbers were reinforced using short and long fibers including jute, silk, and rayon [14—16]. [Pg.353]

Natural rubber Styrene-butadiene rubber Polybutadiene Polyisoprene Nitrile rubber Halogenated nitrile rubber Ethylene-propylene rubber EPDM... [Pg.440]

To convert an elastomer into ebonite, the glass transition temperature, Tg, has to be raised to above 20 °C, or above the operating temperature of the product, in order to remain rigid in use. This is achieved by crosslinking the rubber with a large amount of sulphur. Typically, 25 to 50 phr is used for natural rubber ebonites. Ebonites can be produced from NR, BR, IR, SBR and NBR. Rubbers with low unsaturation, e.g., HR and EPDM, do not form ebonites. [Pg.105]

Polychloroprene (Neoprene), 19 828-866 from butadiene, 4 384t calendering and extrusion of, 19 851 commercial conversion of, 19 846-851 compared with EPDM and natural rubber, 19 846t... [Pg.726]

Cure Systems of Butyl Rubber and EPDM. Nonhalogenated butyl rubber is a copolymer of isobutylene with a small percentage of isoprene which provides cross-linking sites. Because the level of unsaturation is low relative to natural rubber or SBR, cure system design generally requires higher levels of fast accelerators such as the dithiocarbamates. Examples of typical butyl mbber cure systems, their attributes, and principal applications have been reviewed (26). Use of conventional and semi-EV techniques can be used in butyl rubber as shown in Table 7 (21). [Pg.241]

Polymers with solubility parameters differing from those of the solvent by at least 2.0 H, will not dissolve in the solvent at room temperature. Thus although unvulcanized natural rubber (NR), unvulcanized styrene-butadiene elastomer (SBR), unvulcanized butyl rubber, and EPDM dissolve in gasoline or benzene, the vulcanized (cross-linked) polymers are swollen but will not dissolve due to the presence of the crosslinks. [Pg.208]

TABLE 30 Composition of Four Typical Rubbers Used as Closures for Pharmaceutical Formulations Based on Natural, Halobutyl, EPDM, and Silicone Elastomers... [Pg.506]

Elastomer Natural rubber Halobutyl rubber Dimethylpolysiloxane polymer EPDM... [Pg.506]

Water and Effluent Treatment in Nuclear and other chemical plants. Corrosion resistant linings for water treatment vessels and pipelines, pumps, valves, flowmeters, agitators, chemical dosing tanks, effluent tanks etc. Soft natural rubber or ebonite, EPDM, butyl, neoprene or hypalon. [Pg.55]

Neoprene is the generic name for polychloroprene rubber. It has been produced commercially since 1931 and had rapid and wide acceptance because it is much superior to natural rubber for heat and oil resistance. Heat resistance is far better than NR, BR or SBR. but less than EPDM. When heated in the absence of air, neoprene withstands degradation better than other elastomers which are normally considered more heat resistant, and retains its properties fifteen times longer than in the presence of air. Compression set at higher temperature is better than natural rubber and 100°C is typically the test temperature rather than 70°C. Abrasion resistance is not as good as natural rubber but generally better than most heat resistant and oil resistant rubbers. This is also true for tear strength and flex resistance. [Pg.99]

Antiozonents protect the rubber surface by the formation of a protection layer, the ozonides on the surface of rubber by reaction of the antiozonents with ozone. Certain polymers also provide good ozone protection. The use of 10-20 parts of EPDM, a low diene rubber, in natural rubber compound significantly increases ozone resistance. [Pg.241]

RUBBER (Synthetic). Any of a group of manufactured elastomers that approximate one or more of the properties of natural rubber. Some of these aie sodium polysulfide ( Thiokol ). polychloiopiene (neoprene), butadiene-styrene copolymers (SBR), acrylonitrilebutadiene copolymers (nitril rubber), ethvlenepropylene-diene (EPDM) rubbers, synthetic poly-isoprene ( Coral, Natsyn ), butyl rubber (copolymer of isobutylene and isoprene), polyacrylonitrile ( Hycar ). silicone (polysiloranei. epichlorohy-drin, polyurethane ( Vulkollan ). [Pg.1452]

S—EB—S (compounds) polyurethane/elastomer block copolymers polyester/elastomer block copolymers polyamide/elastomer block copolymers polyetherimide/polysiloxane block copolymers polypropylene/EPDM or EPR blends polypropylene/EPDM dynamic vulcanizates polypropylene/butyl rubber dynamic vulcanizates polypropylene/natural rubber dynamic vulcanizates polypropylene/nitrile rubber dynamic vulcanizates PVC/ nitrile rubber blends... [Pg.16]


See other pages where Natural rubber /EPDM is mentioned: [Pg.2533]    [Pg.452]    [Pg.28]    [Pg.271]    [Pg.280]    [Pg.126]    [Pg.207]    [Pg.2533]    [Pg.452]    [Pg.28]    [Pg.271]    [Pg.280]    [Pg.126]    [Pg.207]    [Pg.272]    [Pg.464]    [Pg.112]    [Pg.464]    [Pg.829]    [Pg.777]    [Pg.518]    [Pg.246]    [Pg.102]    [Pg.96]    [Pg.27]    [Pg.39]    [Pg.96]    [Pg.140]    [Pg.169]    [Pg.251]    [Pg.54]    [Pg.80]    [Pg.98]    [Pg.239]    [Pg.20]   
See also in sourсe #XX -- [ Pg.441 , Pg.442 , Pg.445 , Pg.469 ]




SEARCH



EPDM

Natural rubber EPDM blend

© 2024 chempedia.info