Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Natural products modified

Fused oxazoles, particularly tetrahydrofuro[3,2-d]oxazoles, are abundandy present in natural products, modified sugar derivatives, and important bioactive molecules. Ahmed and coworkers have reported a highly efficient, novel, microwave-assisted, metal-free, diastereoselective synthesis of... [Pg.285]

Emulsion Adhesives. The most widely used emulsion-based adhesive is that based upon poly(vinyl acetate)—poly(vinyl alcohol) copolymers formed by free-radical polymerization in an emulsion system. Poly(vinyl alcohol) is typically formed by hydrolysis of the poly(vinyl acetate). The properties of the emulsion are derived from the polymer employed in the polymerization as weU as from the system used to emulsify the polymer in water. The emulsion is stabilized by a combination of a surfactant plus a coUoid protection system. The protective coUoids are similar to those used paint (qv) to stabilize latex. For poly(vinyl acetate), the protective coUoids are isolated from natural gums and ceUulosic resins (carboxymethylceUulose or hydroxyethjdceUulose). The hydroHzed polymer may also be used. The physical properties of the poly(vinyl acetate) polymer can be modified by changing the co-monomer used in the polymerization. Any material which is free-radically active and participates in an emulsion polymerization can be employed. Plasticizers (qv), tackifiers, viscosity modifiers, solvents (added to coalesce the emulsion particles), fillers, humectants, and other materials are often added to the adhesive to meet specifications for the intended appHcation. Because the presence of foam in the bond line could decrease performance of the adhesion joint, agents that control the amount of air entrapped in an adhesive bond must be added. Biocides are also necessary many of the materials that are used to stabilize poly(vinyl acetate) emulsions are natural products. Poly(vinyl acetate) adhesives known as "white glue" or "carpenter s glue" are available under a number of different trade names. AppHcations are found mosdy in the area of adhesion to paper and wood (see Vinyl polymers). [Pg.235]

Flash chromatography is widely employed for the purification of crude products obtained by synthesis at a research laboratory scale (several grams) or isolated as extracts from natural products or fermentations. The solid support is based on silica gel, and the mobile phase is usually a mixture of a hydrocarbon, such as hexane or heptane, with an organic modifier, e.g. ethyl acetate, driven by low pressure air. (Recently the comparison of flash chromatography with countercurrent chromatography (CCC), a technique particularly adapted to preparative purposes, has been studied for the separation of nonchiral compounds [90].)... [Pg.7]

The enzymatic transformation of natural products is by for file most attractive option. In this approach, it can be envisaged that sterols, which are relatively abundant, may be selectively modified to produce desired products. Hie diversity of enzyme activities, their reaction specificity, regiospecificity and stereospedfidty are all features which could contribute to carrying out the desired changes. This does not mean, however, that transformations using enzyme systems are simple. Nevertheless, biotransformations have become of vital importance in the production of steroids. [Pg.298]

Oxa-tetrahydropyridines are interesting intermediates for the preparation of pharmaceuticals and natural product based alkaloid systems. A modified Hantzsch reaction was developed under microwave irradiation for the preparation of 2-oxa-tetrahydropyridines 173 by reaction of Meldrum s acid, a /3-ketoester and an aldehyde, using NH4OAC as the source of ammonia (Scheme 62). Yields ranged from 81 to 91% at temperatures of 100-130 °C depending on the substrate (the aldehyde) employed. All the products obtained have the same structure except for the aromatic substituent in position 4 [109]. [Pg.245]

The absolute stereochemistry of isosaraine-1 (48) and -2 (49) has been established using the modified Mosher s method on the reduced derivatives 50 and 51 obtained after reaction of the natural products with NaBH4 [31]. [Pg.224]

On-line SFE-pSFC-FTIR was used to identify extractable components (additives and monomers) from a variety of nylons [392]. SFE-SFC-FID with 100% C02 and methanol-modified scC02 were used to quantitate the amount of residual caprolactam in a PA6/PA6.6 copolymer. Similarly, the more permeable PS showed various additives (Irganox 1076, phosphite AO, stearic acid - ex Zn-stearate - and mineral oil as a melt flow controller) and low-MW linear and cyclic oligomers in relatively mild SCF extraction conditions [392]. Also, antioxidants in PE have been analysed by means of coupling of SFE-SFC with IR detection [121]. Yang [393] has described SFE-SFC-FTIR for the analysis of polar compounds deposited on polymeric matrices, whereas Ikushima et al. [394] monitored the extraction of higher fatty acid esters. Despite the expectations, SFE-SFC-FTIR hyphenation in on-line additive analysis of polymers has not found widespread industrial use. While applications of SFC-FTIR and SFC-MS to the analysis of additives in polymeric matrices are not abundant, these techniques find wide application in the analysis of food and natural product components [395]. [Pg.479]

The domino process probably involves the chiral enamine intermediate 2-817 formed by reaction of ketone 2-813 with 2-815. With regard to the subsequent cy-doaddition step of 2-817 with the Knoevenagel condensation product 2-816, it is interesting to note that only a normal Diels-Alder process operates with the 1,3-bu-tadiene moiety in 2-817 and not a hetero-Diels-Alder reaction with the 1-oxa-l,3-butadiene moiety in 2-816. The formed spirocydic ketones 2-818/2-819 can be used in natural products synthesis and in medidnal chemistry [410]. They have also been used in the preparation of exotic amino adds these were used to modify the physical properties and biological activities of peptides, peptidomimetics, and proteins... [Pg.175]

The Michael addition of nitro compounds is a useful method for the preparation of various natural products. The Michael addition of nitroalkanes to dehydroalanines gives y-nitro-a-amino acids, which provides a convenient synthesis of side-chain modified a-amino acids (Eq. 4.114).152 Transformations of y-nitro-a-amino acid derivatives into a-amino acids occur by reductive denitration (see Section 7.2) into y-oxygenated a-amino acids by the Nef reaction (Eq. [Pg.106]

One advantage of whole-cell biotransformation that has not been addressed adequately in this chapter is the ability to modify compounds with complex structure, such as natural products. Natural products are ideal substrates for biotransformation reactions since they are synthesized in a series of enzymatic reactions by the whole cells. The modification of natural products by biotransformation has been reviewed recently by Azerad [ 13] and a majority of the modifications were carried out by whole-cell biotransformations. Additional examples of modification of natural products by whole-cell biotransformations can also be found in the review article by Patel [2]. Natural products are an important source of new drugs and new drug leads [53]. The use of biotransformation, especially whole-cell biotransformation, in modification of natural products for lead optimization and generating libraries of derivatives for S AR and screening studies is important for the pharmaceutical industry. [Pg.240]


See other pages where Natural products modified is mentioned: [Pg.16]    [Pg.4]    [Pg.16]    [Pg.90]    [Pg.1625]    [Pg.1640]    [Pg.536]    [Pg.16]    [Pg.4]    [Pg.16]    [Pg.90]    [Pg.1625]    [Pg.1640]    [Pg.536]    [Pg.234]    [Pg.42]    [Pg.250]    [Pg.250]    [Pg.157]    [Pg.304]    [Pg.47]    [Pg.110]    [Pg.197]    [Pg.9]    [Pg.581]    [Pg.164]    [Pg.626]    [Pg.355]    [Pg.297]    [Pg.298]    [Pg.693]    [Pg.152]    [Pg.260]    [Pg.263]    [Pg.600]    [Pg.149]    [Pg.276]    [Pg.188]    [Pg.212]    [Pg.13]    [Pg.347]    [Pg.84]    [Pg.122]    [Pg.315]    [Pg.82]    [Pg.211]   
See also in sourсe #XX -- [ Pg.553 ]




SEARCH



© 2024 chempedia.info