Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Naphthalene spectroscopy

The synthesis of 1 -benzothiepin 1 -oxide (23) can be achieved via complex formation with tricarbonyl iron, and quantitative oxidation of the coordination compound 22 with 3-chloroperoxy-benzoic acid. Subsequent irradiation at — 50 C provides 23, which crystallized as yellow needles after low-temperature (-40 C) chromatography, and was characterized by 1H NMR spectroscopy at — 30 C23 before loosing sulfur within one hour at 13°C to give naphthalene. [Pg.90]

Fluorescence spectroscopy is also particularly well-suited to clarify many aspects of polymer/surfactant interactions on a molecular scale. The technique provides information on the mean aggregation numbers of the complexes formed and measures of the polarity and internal fluidity of these structures. Such interactions may be monitored by fluorescence not only with extrinsic probes or labelled polymers, but also by using fluorescent surfactants. Schild and Tirrell [154] have reported the use of sodium 2-(V-dodecylamino) naphthalene-6-sulfonate (SDN6S) to study the interactions between ionic surfactants and poly(V-isopropylacrylamide). [Pg.322]

In order to combat this, the rotating frame Overhauser effect spectroscopy (ROESY) techniques can be employed. An in-depth discussion of how this technique works is outside the remit of this book but suffice to say, in the ROESY methods (1- and 2-D), NOE data is acquired as if in a weak r.f. field rather than in a large, static magnetic field and this assures that all NOEs are present and positive, irrespective of tumbling rate and magnet size. It is possible that some TOCSY correlations can break through in ROESY spectra but these will have opposite phase to the genuine ROESY correlations and so should therefore not be a problem - unless they should overlap accidentally with them. A 2-D ROESY spectrum of the naphthalene compound is shown below (Spectrum 8.6). [Pg.123]

When several magnetically equivalent nuclei are present in a radical, some of the multiplet lines appear at exactly the same field position, i.e., are degenerate , resulting in variations in component intensity. Equivalent spin-1/2 nuclei such as 1H, 19F, or 31P result in multiplets with intensities given by binomial coefficients (1 1 for one nucleus, 1 2 1 for two, 1 3 3 1 for three, 1 4 6 4 1 for four, etc.). One of the first aromatic organic radical anions studied by ESR spectroscopy was the naphthalene anion radical,1 the spectrum of which is shown in Figure 2.2. The spectrum consists of 25 lines, a quintet of quintets as expected for hyperfine coupling to two sets of four equivalent protons. [Pg.22]

Photolysis of acyldisilanes at A > 360 nm (103,104) was shown, based on trapping experiments, to yield both silenes 22 and the isomeric siloxy-carbenes 23, but with polysilylacylsilanes only silenes 24 are formed, as shown by trapping experiments and NMR spectroscopy (104,122-124) (see Scheme 4). These silenes react conventionally with alcohols, 2,3-dimethylbutadiene (with one or two giving some evidence of minor amounts of ene-like products), and in a [2 + 2] manner with phenyl-propyne. Ketones, however, do not react cleanly. Perhaps the most unusual behavior of this family of silenes is their exclusive head-to-head dimerization as described in Section V. More recently it has been found that these silenes undergo thermal [2 + 2] reactions with butadiene itself (with minor amounts of the [2 + 4] adduct) and with styrene and vinyl-naphthalene. Also, it has been found that a dimethylsilylene precursor will... [Pg.33]

Near-infrared (NIR) absorption spectroscopy has been used to characterize the delocalized re-stacks on electronic conducting dendrimers by Miller and coworkers [47-49]. These dendrimers were prepared by peripherally modifying PAMAM dendrimers with cationically substituted naphthalene diimides, and then reduced with one electron per imide group to convert each imide into its anion radical. The re-stacking of these radical anions on these dendrimer surfaces was indicated by an absorbance band beyond 2000 nm in the NIR spectra. [Pg.328]

Infrared spectroscopy is used for the determination of benzene in motor and/or aviation gasoline (ASTM D4053), while ultraviolet spectroscopy is employed for the evaluation of mineral oils (ASTM D2269) and for determining the naphthalene content of aviation turbine fuels (ASTM D1840). [Pg.45]

Several examples of carbenoid ion-radicals are discussed within this book. A silylene anion-radical preparation and properties is exemplified here. Scheme 2.5 shows the path to this species. Tetrakis(di-tert-butytmethylsilyl)disilylene was reduced by lithium or sodium salt of naphthalene anion-radical in THF at 78°C and then 12-crown-4 was added to the resulting reaction mixture. The silylene anion-radical was obtained as the corresponding alkali salt. Red crystals of the salt were isolated and characterized by ESR spectroscopy and x-ray crystallography (Inoue et al. 2007). [Pg.92]

Methods of electron spectroscopy are widely used to follow the electron-transfer process. Thus, the progress of electron transfer from naphthalene anion-radical to cup-stacked carbon nanotubes is easily detected by monitoring the UV absorption spectrum. Namely, the absorption band around 500-900 nm due to naphthalene anion-radical completely disappears after reduction of the nanotubes. At the same time, the reduced nanotubes exhibit ESR spectrum characterized with g-factor of 2.0025 (Saito et al. 2006). This g-value is close to the free spin g-factor of 2.0023 that is diagnostic of the delocalized electron on carbon nanomaterials (Stinchcombe et al. 1993). It should be parallelly... [Pg.237]

In order to allow for a closer approach of the boron centers, the introduction of flat cyclic boryl moieties with reduced steric hindrance has also been pursued. Thus, the reaction of 26 with 9-chloro-9-borafluorene and 5-bromo-10,l 1-di-hydrodibenzo[b,f]borepin resulted in the formation of diboranes 31 and 32 which bear two different boryl moieties at the pen-positions of naphthalene (Scheme 13). " These diboranes have been characterized by multinuclear NMR spectroscopy and X-ray single-crystal analysis. In 31, the boron center of the borafluorenyl moiety is 7i-coordinated by the zp o-carbon of a mesityl group with which it forms a contact of 2.730(3) A (Fig. 8). As a result of this interaction, the boron center involved in this contact is slightly pyramidalized (Xangie = 355.7°). In the case of 32 (Fig. 9), the distance between the boron center of the boracylic moiety and the zpio-carbon of... [Pg.70]

Preliminary studies of nitrogen substituent inversion processes have been reported for several naphthalen-l,4-imine derivatives. The syn and anti invertomers of the A-chloroamine (117) equilibrate in solution to a mixture in proportion 3 2. The process can be followed kinetically by NMR spectroscopy starting from the pure anti compound the inversion is relatively slow ki = 2.6 x 10 sec at 23°), and the free-energy barrier to inversion is as high AF = 23.5 kcal mole ) as values found for inversion in aziridines. (A-Chloroaziridine derivatives, for which the energy barrier is even higher, have also been resolved into diastereoisomeric invertomers. )... [Pg.106]

The dynamic behavior of various solid organolithium complexes with TMEDA was investigated by variable-temperature and CP/MAS and Li MAS NMR spectroscopies. Detailed analysis of the spectra of the complexes led to proposals of various dynamic processes, such as inversion of the five-membered TMEDA-Li rings and complete rotation of the TMEDA ligands in their complex with the PhLi dimer (81), fast rotation of the ligands in the complex with cyclopentadienyllithium (82) and 180° ring flips in the complex with dilithium naphthalene (83) °. The significance of the structure of lithium naphthalene, dilithium naphthalene and their TMEDA solvation coiMlexes, in the function of naphthalene as catalyst for lithiation reactions, was discussed . ... [Pg.345]

B. M. Substrate Binding to NO-Lerro-Naphthalene 1,2-Dioxygenase Studied by High-Resolution Q-Band Pulsed H-ENDOR Spectroscopy. ]. Am. Chem. Soc. 2003, 125, 7056-7066. [Pg.682]

The reaction involves the transfer of an electron from the alkali metal to naphthalene. The radical nature of the anion-radical has been established from electron spin resonance spectroscopy and the carbanion nature by their reaction with carbon dioxide to form the carboxylic acid derivative. The equilibrium in Eq. 5-65 depends on the electron affinity of the hydrocarbon and the donor properties of the solvent. Biphenyl is less useful than naphthalene since its equilibrium is far less toward the anion-radical than for naphthalene. Anthracene is also less useful even though it easily forms the anion-radical. The anthracene anion-radical is too stable to initiate polymerization. Polar solvents are needed to stabilize the anion-radical, primarily via solvation of the cation. Sodium naphthalene is formed quantitatively in tetrahy-drofuran (THF), but dilution with hydrocarbons results in precipitation of sodium and regeneration of naphthalene. For the less electropositive alkaline-earth metals, an even more polar solent than THF [e.g., hexamethylphosphoramide (HMPA)] is needed. [Pg.414]


See other pages where Naphthalene spectroscopy is mentioned: [Pg.343]    [Pg.304]    [Pg.513]    [Pg.123]    [Pg.447]    [Pg.85]    [Pg.150]    [Pg.183]    [Pg.291]    [Pg.286]    [Pg.293]    [Pg.187]    [Pg.22]    [Pg.106]    [Pg.94]    [Pg.582]    [Pg.183]    [Pg.312]    [Pg.344]    [Pg.358]    [Pg.178]    [Pg.238]    [Pg.83]    [Pg.740]    [Pg.188]    [Pg.353]    [Pg.356]    [Pg.93]    [Pg.53]    [Pg.37]   


SEARCH



Naphthalene spectroscopy excitation energies

Spectroscopy naphthalene molecule

© 2024 chempedia.info