Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Naphtha removal

Derivation (1) From crude anthracene cake by selective solution of the phenanthrene with crude solvent naphtha, removal of the anthracene by conversion into a sulfonic derivative, and extraction by means of water. (2) Synthetically from o-aminobi-phenyl. [Pg.229]

Two undesirable aspects of FCC naphtha quaUty are that it may contain unacceptably high amounts of foul smelling mercaptans, and that its thermal stabiUty may be too low. Mercaptans are usually found in the light FCC naphtha and may be removed or converted to sulfides and disulfides by a sweetening process such as Merox, developed by UOP. Thermal stabiUty is improved in sweetening processes through removal of cresyUc and naphthenic acids. It may be further improved by clay treating and by addition of oxidation inhibitors such as phenylene diamine. [Pg.184]

Hoechst WHP Process. The Hoechst WLP process uses an electric arc-heated hydrogen plasma at 3500—4000 K it was developed to industrial scale by Farbwerke Hoechst AG (8). Naphtha, or other Hquid hydrocarbon, is injected axially into the hot plasma and 60% of the feedstock is converted to acetylene, ethylene, hydrogen, soot, and other by-products in a residence time of 2—3 milliseconds Additional ethylene may be produced by a secondary injection of naphtha (Table 7, Case A), or by means of radial injection of the naphtha feed (Case B). The oil quenching also removes soot. [Pg.386]

The carbon black (soot) produced in the partial combustion and electrical discharge processes is of rather small particle si2e and contains substantial amounts of higher (mostly aromatic) hydrocarbons which may render it hydrophobic, sticky, and difficult to remove by filtration. Electrostatic units, combined with water scmbbers, moving coke beds, and bag filters, are used for the removal of soot. The recovery is illustrated by the BASF separation and purification system (23). The bulk of the carbon in the reactor effluent is removed by a water scmbber (quencher). Residual carbon clean-up is by electrostatic filtering in the case of methane feedstock, and by coke particles if the feed is naphtha. Carbon in the quench water is concentrated by flotation, then burned. [Pg.390]

Naphtha desulfurization is conducted in the vapor phase as described for natural gas. Raw naphtha is preheated and vaporized in a separate furnace. If the sulfur content of the naphtha is very high, after Co—Mo hydrotreating, the naphtha is condensed, H2S is stripped out, and the residual H2S is adsorbed on ZnO. The primary reformer operates at conditions similar to those used with natural gas feed. The nickel catalyst, however, requires a promoter such as potassium in order to avoid carbon deposition at the practical levels of steam-to-carbon ratios of 3.5—5.0. Deposition of carbon from hydrocarbons cracking on the particles of the catalyst reduces the activity of the catalyst for the reforming and results in local uneven heating of the reformer tubes because the firing heat is not removed by the reforming reaction. [Pg.420]

When the recycle soot in the feedstock is too viscous to be pumped at temperatures below 93°C, the water—carbon slurry is first contacted with naphtha carbon—naphtha agglomerates are removed from the water slurry and mixed with additional naphtha. The resultant carbon—naphtha mixture is combined with the hot gasification feedstock which may be as viscous as deasphalter pitch. The feedstock carbon—naphtha mixture is heated and flashed, and then fed to a naphtha stripper where naphtha is recovered for recycle to the carbon—water separation step. The carbon remains dispersed in the hot feedstock leaving the bottom of the naphtha stripper column and is recycled to the gasification reactor. [Pg.423]

The cracked products leave as overhead materials, and coke deposits form on the inner surface of the dmm. To provide continuous operation, two dmms are used while one dmm is on-stream, the one off-stream is being cleaned, steamed, water-cooled, and decoked in the same time interval. The temperature in the coke dmm is in the range of 415—450°C with pressures in the range of 103—621 kPa (15—90 psi). Overhead products go to the fractionator, where naphtha and heating oil fractions are recovered. The nonvolatile material is combined with preheated fresh feed and returned to the furnace. The coke dmm is usually on stream for about 24 hours before becoming filled with porous coke, after which the coke is removed hydraulically. [Pg.204]

Another method of separating petrolatum from residua is by centrifuge dewaxing. In this process, the reduced cmde oil is dissolved in naphtha and chilled to —18° C or lower, which causes the wax to separate. The mixture is then fed to a battery of centrifuges where the wax is separated from the Hquid. However, the centrifuge method has been largely displaced by solvent dewaxing methods as well as more modem methods of wax removal. Similar use is... [Pg.211]

Capital costs which foUow the same trend as energy consumption, can be about 1.5 to 2.0 times for partial oxidation and coal gasification, respectively, that for natural gas reforming (41). A naphtha reforming plant would cost about 15—20% more than one based on natural gas because of the requirement for hydrotreatiag faciUties and a larger front-end needed for carbon dioxide removal. [Pg.344]

Coumarone—Indene Kesins. These should be called polyindene resins (17) (see Hydrocarbon resins). They are derived from a close-cut fraction of a coke-oven naphtha free of tar acids and bases. This feedstock, distilling between 178 and 190°C and containing a minimum of 30% indene, is warmed to 35°C and polymeri2ed by a dding 0.7—0.8% of the phenol or acetic acid complex of boron trifluoride as catalyst. With the phenol complex, tar acids need not be completely removed and the yield is better. The reaction is exothermic and the temperature is kept below 120°C. When the reaction is complete, the catalyst is decomposed by using a hot concentrated solution of sodium carbonate. Unreacted naphtha is removed, first with Hve steam and then by vacuum distillation to leave an amber-colored resin. It is poured into trays, allowed to cool, and broken up for sale. [Pg.339]

First, the tar acids were removed from the naphtha fractions of light oils and, in the case of CVR tars, carboHc oil. The oils were then mixed with 25—35% sulfuric acid. After separation of the sulfates, the aqueous solution was diluted with water and the resinous material skimmed off. The diluted sulfate solution was boiled to expel any neutral oils, dried by the addition of soHd caustic soda or a2eotropically with ben2ene, and fractionated to yield pyridine, 2-methylpyridine (a-picoline), and a fraction referred to as 90/140 bases, which consisted mainly of 3- and 4-methylpyridines and 2,6-dimethylpyridine (2,6-lutidine). Higher boiling fractions were termed 90/160 and 90/180 bases because 90% of the product distilled at 160 and 180°C, respectively. [Pg.339]

Asphaltenes seem to be relatively constant in composition in residual asphalts, despite the source, as deterrnined by elemental analysis (6). Deterrnination of asphaltenes is relatively standard, and the fractions are termed / -pentane, / -hexane, / -heptane, or naphtha-insoluble, depending upon the precipitant used (5,6,49). After the asphaltenes are removed, resinous fractions are removed from the maltenes-petrolenes usually by adsorption on activated gels or clays. Recovery of the resin fraction by desorbtion is usually nearly quantitative. [Pg.367]


See other pages where Naphtha removal is mentioned: [Pg.155]    [Pg.295]    [Pg.155]    [Pg.295]    [Pg.115]    [Pg.236]    [Pg.165]    [Pg.185]    [Pg.389]    [Pg.405]    [Pg.428]    [Pg.428]    [Pg.158]    [Pg.484]    [Pg.207]    [Pg.208]    [Pg.343]    [Pg.343]    [Pg.353]    [Pg.353]    [Pg.126]    [Pg.508]    [Pg.123]    [Pg.339]    [Pg.339]    [Pg.181]    [Pg.41]    [Pg.42]    [Pg.368]    [Pg.497]    [Pg.182]    [Pg.224]    [Pg.234]    [Pg.271]    [Pg.440]    [Pg.1327]    [Pg.2518]    [Pg.248]    [Pg.249]    [Pg.314]   
See also in sourсe #XX -- [ Pg.73 ]




SEARCH



Naphtha

© 2024 chempedia.info