Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

NADPH-Cytochrome

He/minthosporium (15). The mode of action is considered to be inhibition of the enzyme NADPH-cytochrome C reductase, which results in the generation of free radicals and/or peroxide derivatives of flavin which oxidize adjacent unsaturated fatty acids to dismpt membrane integrity (16) (see Enzyme inhibitors). [Pg.105]

Squalene epoxidase, like most enzymes responsible for the later steps of sterol biosynthesis [43, 51], is membrane-bound which makes its purification in native form challenging. The purification is additionally complicated by the presence of a large number of cytochrome P450 and other enzymes that have similar hydro-phobicity and size as squalene epoxidase and are hence difficult to remove [52]. Most studies have been carried out with rat liver microsome squalene epoxidase either partially purified or as a homogenate of the cell membrane fraction. In vitro reconstitution of squalene epoxidase activity is absolutely dependent on molecular oxygen, NADPH, FAD, and NADPH-cytochrome c reductase [52, 53]. In this respect, squalene epoxidase resembles the cytochrome P450 enzymes described... [Pg.370]

To summarize, squalene epoxidase is a flavoprotein capable of catalyzing the insertion of oxygen into the 2,3-double bond of squalene to give 2,3-oxidosqualene, with the second oxygen atom from 02 being reduced to water. The reducing equivalents necessary for this transformation are relayed from NADPH through NADPH-cytochrome c reductase to the flavin cofactor of the epoxidase. [Pg.373]

Asymmetric oxidation of this sulphide was also catalyzed by two isocytochromes P 450 purified from phenobarbital induced rat liver309. Both P 450 isocytochromes, termed PB-1 and PB-4, when reconstituted with purified rat liver NADPH-cytochrome P 450 reductase and cytochrome b5 afforded ethyl p-tolyl sulphoxide with S-configuration at the sulphur atom. In the case of PB-1 optical purity of this sulphoxide was 58% whereas with PB-4 it was 78%. [Pg.293]

The microsomal fraction consists mainly of vesicles (microsomes) derived from the endoplasmic reticulum (smooth and rough). It contains cytochrome P450 and NADPH/cytochrome P450 reductase (collectively the microsomal monooxygenase system), carboxylesterases, A-esterases, epoxide hydrolases, glucuronyl transferases, and other enzymes that metabolize xenobiotics. The 105,000 g supernatant contains soluble enzymes such as glutathione-5-trans-ferases, sulfotransferases, and certain esterases. The 11,000 g supernatant contains all of the types of enzyme listed earlier. [Pg.46]

Cytochrome P450s catalyze reactions that introduce one atom of oxygen derived from molecular oxygen into the substrate, yielding a hydroxylated product. NADPH and NADPH-cytochrome P450 reductase are involved in the complex reaction mechanism. [Pg.632]

DMN oxidative demethylation has been shown to be a liver mi-crosome cytochrome P-450 monooxygenase (10) Lotlikar et al. (11) found that a reconstituted enzyme system, consisting of cytochrome P-450, NADPH-cytochrome P-450 reductase and phosphatidyl choline was effective in catalyzing the demethylation of DMN. The most commonly accepted mechanism for the oxidative demethylation of DMN and, by extension, of other dialkyInltrosamlnes is shown in Scheme 1. [Pg.5]

The subcellular location of PG was studied in cells disrupted by osmotic lysis through formation and disruption of sphaeroplasts from self-induced anaerobically-grown cells. A discontinuous sucrose-density gradient produced four bands labelled I, II, III and IV. Band I included many vesicles and a peak of alkaline phosphatase activity (a vacuolar marker in yeasts), NADPH cytochrome c oxidoreductase activity, an endoplasmic reticulum marker, and... [Pg.864]

Sasame, H.A. Ames, M.M. and Nelson, S.D. Cytochrome P-450 and NADPH cytochrome c reductase in rat brain Formation of catechols and reactive catechol metalbolites. Biochem Biophys Res Commun 78 919-926, 1977. [Pg.339]

Yamazaki, H., Ueng, Y.F., Shimada, T. and Guengerich, F.P. (1995) Roles of divalent metal ions in oxidations catalyzed by recombinant cytochrome P450 3A4 and replacement of NADPH-cytochrome P450 reductase with other flavoproteins, ferredoxin, and oxygen surrogates. Biochemistry, 34, 8380—8389. [Pg.223]

E. G., Creation of polarized cells coexpressing CYP3A4, NADPH cytochrome P450 reductase and MDRl/P-glycoprotein, Pharm. Res. 2000, 37, 803-810. [Pg.124]

Saito et al. (134) found that the cytosolic nitroreductase activity was due to DT-diaphorase, aldehyde oxidase, xanthine oxidase plus other unidentified nitroreductases. As anticipated, the microsomal reduction of 1-nitropyrene was inhibited by 0 and stimulated by FMN which was attributed to this cofactor acting as an electron shuttle between NADPH-cytochrome P-450 reductase and cytochrome P-450. Carbon monoxide and type II cytochrome P-450 inhibitors decreased the rate of nitroreduction which was consistent with the involvement of cytochrome P-450. Induction of cytochromes P-450 increased rates of 1-aminopyrene formation and nitroreduction was demonstrated in a reconstituted cytochrome P-450 system, with isozyme P-448-IId catalyzing the reduction most efficiently. [Pg.386]

Microsomal NADPH-Cytochrome P-450 Reductase and NADH cytochrome b5 Reductase... [Pg.15]

MICROSOMAL NADPH-CYTOCHROME P-450 REDUCTASE AND NADH CYTOCHROME b5 REDUCTASE... [Pg.764]

The primary function of flavoprotein NADPH-cytochrome P-450 reductase is the hydro-xylation of various substrates, which occurs during electron transfer from NADPH to cytochrome P-450 [1] ... [Pg.764]

While cytochrome P-450 catalyzes the interaction with substrates, a final step of microsomal enzymatic system, flavoprotein NADPH-cytochrome P-450 reductase catalyzes the electron transfer from NADPH to cytochrome P-450. As is seen from Reaction (1), this enzyme contains one molecule of each of FMN and FAD. It has been suggested [4] that these flavins play different roles in catalysis FAD reacts with NADPH while FMN mediates electron... [Pg.764]

It has been believed that P-450 reduction by NADPH cytochrome P-450 reductase is a biphasic process, but it was recently shown [7] that some P-450 cytochromes are reduced with single-exponential kinetics and that the presence of substrate is not an obligatory condition for the reduction of all P-450 forms. Thus, the kinetics of reduction of various ferric P-450 cytochromes possibly depends on many factors such as substrate, rate-limiting step, etc. [Pg.765]

Although it is still unclear whether the formation of oxidized and hydroxylated products, which is the main pathway of catalytic activities of cytochrome-R-450 reductase, is mediated by free radicals, mitochondrial enzymes are certainly able to produce oxygen radicals as the side products of their reactions. It has been proposed in earlier studies [14,15] that superoxide and hydroxyl radicals (the last in the presence of iron complexes) are formed as a result of the oxidation of reduced NADPH cytochrome-P-450 reductase ... [Pg.766]

If the mechanism of superoxide production in microsomes by NADPH-cytochrome P-450 reductase, NADH-cytochrome b5 reductase, and cytochrome P-450 is well documented, it cannot be said about microsomal hydroxyl radical production. There are numerous studies, which suggest the formation of hydroxyl radicals in various mitochondrial preparations and by isolated microsomal enzymes. It has been shown that the addition of iron complexes to microsomes stimulated the formation of hydroxyl radicals supposedly via the Fenton... [Pg.766]

Then, A-hydroxyphentermine supposedly reacts with superoxide generated by NADPH-cytochrome P-450 reductase and forms the final product 2-methyl-2-nitro-l-phenylpropane ... [Pg.768]

Thus, superoxide itself is obviously too inert to be a direct initiator of lipid peroxidation. However, it may be converted into some reactive species in superoxide-dependent oxidative processes. It has been suggested that superoxide can initiate lipid peroxidation by reducing ferric into ferrous iron, which is able to catalyze the formation of free hydroxyl radicals via the Fenton reaction. The possibility of hydroxyl-initiated lipid peroxidation was considered in earlier studies. For example, Lai and Piette [8] identified hydroxyl radicals in NADPH-dependent microsomal lipid peroxidation by EPR spectroscopy using the spin-trapping agents DMPO and phenyl-tcrt-butylnitrone. They proposed that hydroxyl radicals are generated by the Fenton reaction between ferrous ions and hydrogen peroxide formed by the dismutation of superoxide. Later on, the formation of hydroxyl radicals was shown in the oxidation of NADPH catalyzed by microsomal NADPH-cytochrome P-450 reductase [9,10]. [Pg.774]

It has earlier been suggested to make cytochrome c a more specific reagent for superoxide detection by its acetylation or succinoylation [9-11], It was proposed that acetylation and succinoylation must cause a greater decrease in the reaction of cytochrome c with NADPH cytochrome P-450 reductase than with superoxide due to a decrease in the electrostatic charge of native cytochrome c [12]. However, the rate constant for the most selective succinoylated cytochrome c became about 10% of native cytochrome [13], making this assay even less sensitive. [Pg.963]

NAD PI I gives up hydrogen atoms to the flavo protein NADPH— cytochrome P450 reductase and becomes NADP+. The reduced flavo protein transfers these reducing equivalents to cytochrome P450. The reducing... [Pg.54]


See other pages where NADPH-Cytochrome is mentioned: [Pg.655]    [Pg.105]    [Pg.372]    [Pg.218]    [Pg.922]    [Pg.181]    [Pg.27]    [Pg.627]    [Pg.114]    [Pg.303]    [Pg.118]    [Pg.118]    [Pg.31]    [Pg.213]    [Pg.214]    [Pg.390]    [Pg.764]    [Pg.765]    [Pg.767]    [Pg.767]    [Pg.780]    [Pg.839]    [Pg.863]    [Pg.39]   


SEARCH



NADPH and cytochrome

NADPH oxidase/cytochrome

NADPH oxidase/cytochrome 554 complex

NADPH-Cytochrome P450 Reductase (CPR)

NADPH-cytochrome P450 enzymes

NADPH-cytochrome reductase

NADPH/cytochrome P450 reductase

© 2024 chempedia.info