Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multiple reactions complex

Sampling of a two-fluid phase system containing powdered catalyst can be problematic and should be considered in the reactor design. In the case of complex reacting systems with multiple reaction paths, it is important that isothermal data are obtained. Also, different activation energies for the various reaction paths will make it difficult to evaluate the rate constants from non-isothermal data. [Pg.244]

Note that the Roman numeral subscripts refer to numbered reactions and have nothing to do with iodine. All these examples have involved elementary reactions. Multiple reactions and apparently single but nonelementary reactions are called complex. Complex reactions, even when apparently single, consist of a number of elementary steps. These steps, some of which may be quite fast, constitute the mechanism of the observed, complex reaction. As an example, suppose that... [Pg.36]

Chapter 2 developed a methodology for treating multiple and complex reactions in batch reactors. The methodology is now applied to piston flow reactors. Chapter 3 also generalizes the design equations for piston flow beyond the simple case of constant density and constant velocity. The key assumption of piston flow remains intact there must be complete mixing in the direction perpendicular to flow and no mixing in the direction of flow. The fluid density and reactor cross section are allowed to vary. The pressure drop in the reactor is calculated. Transpiration is briefly considered. Scaleup and scaledown techniques for tubular reactors are developed in some detail. [Pg.81]

Chapter 2 treated multiple and complex reactions in an ideal batch reactor. The reactor was ideal in the sense that mixing was assumed to be instantaneous and complete throughout the vessel. Real batch reactors will approximate ideal behavior when the characteristic time for mixing is short compared with the reaction half-life. Industrial batch reactors have inlet and outlet ports and an agitation system. The same hardware can be converted to continuous operation. To do this, just feed and discharge continuously. If the reactor is well mixed in the batch mode, it is likely to remain so in the continuous mode, as least for the same reaction. The assumption of instantaneous and perfect mixing remains a reasonable approximation, but the batch reactor has become a continuous-flow stirred tank. [Pg.117]

This chapter develops the techniques needed to analyze multiple and complex reactions in stirred tank reactors. Physical properties may be variable. Also treated is the common industrial practice of using reactor combinations, such as a stirred tank in series with a tubular reactor, to accomplish the overall reaction. [Pg.117]

The reaction of Example 7.4 is not elementary and could involve shortlived intermediates, but it was treated as a single reaction. We turn now to the problem of fitting kinetic data to multiple reactions. The multiple reactions hsted in Section 2.1 are consecutive, competitive, independent, and reversible. Of these, the consecutive and competitive t5T>es, and combinations of them, pose special problems with respect to kinetic studies. These will be discussed in the context of integral reactors, although the concepts are directly applicable to the CSTRs of Section 7.1.2 and to the complex reactors of Section 7.1.4. [Pg.220]

Figure 12 (from the chapter Exploring Multiple Reaction Paths to a Single Product Channel ). Two-dimensional cut through the potential surface for fragmentation of the transition state [OH CH3 ] complex as a function of the CF bond length and the FCO angle. All other coordinates are optimized at each point of this PES. Pathway 1 is the direct dissociation, while pathway 2 leads to the hydrogen-bonded [CH3OH F ] structure. The letter symbols correspond to configurations shown in Fig. 11. Reprinted from [63] with permission from the American Association for the Advancement of Science. Figure 12 (from the chapter Exploring Multiple Reaction Paths to a Single Product Channel ). Two-dimensional cut through the potential surface for fragmentation of the transition state [OH CH3 ] complex as a function of the CF bond length and the FCO angle. All other coordinates are optimized at each point of this PES. Pathway 1 is the direct dissociation, while pathway 2 leads to the hydrogen-bonded [CH3OH F ] structure. The letter symbols correspond to configurations shown in Fig. 11. Reprinted from [63] with permission from the American Association for the Advancement of Science.
Consider the example of a process that involves the multiple reactions in Equation 13.3. Because there is a mixture of FEED, PRODUCT and BYPRODUCT in the reactor effluent, an additional separator is required. The economic trade-offs now become more complex and a new cost must be added to the trade-offs. This is a raw materials efficiency cost due to byproduct formation. If the PRODUCT formation is kept constant, despite varying levels of BYPRODUCT formation, then the cost can be defined to be1112 ... [Pg.282]

Undoubtedly, the technique most suited to tackle polyatomic multichannel reactions is the crossed molecular beam (CMB) scattering technique with mass spectrometric detection and time-of-flight (TOF) analysis. This technique, based on universal electron-impact (El) ionization coupled with a quadrupole mass filter for mass selection, has been central in the investigation of the dynamics of bimolecular reactions during the past 35 years.1,9-11 El ionization affords, in principle, a universal detection method for all possible reaction products of even a complex reaction exhibiting multiple reaction pathways. Although the technique is not usually able to provide state-resolved information, especially on a polyatomic... [Pg.331]

Equation 8.3.4 may also be used in the analysis of kinetic data taken in laboratory scale stirred tank reactors. One may directly determine the reaction rate from a knowledge of the reactor volume, flow rate through the reactor, and stream compositions. The fact that one may determine the rate directly and without integration makes stirred tank reactors particularly attractive for use in studies of reactions with complex rate expressions (e.g., enzymatic or heterogeneous catalytic reactions) or of systems in which multiple reactions take place. [Pg.272]

The LC-MS/MS technique has been used to quantify and identify phenolic compounds. In order to quantify, multiple reaction monitoring (MRM), in which there is a combination of the precursor ion and one of its daughter fragments, is used to characterize a particular compound. This behavior should be as specific as possible in samples with a complex mixture of phenolic compounds. This technique has been largely used to quantify phenolic compound metabolites in urine and plasma (Urpf-Sarda and others 2005, 2007). In this context, LC-ESI-MS/MS with negative mode has been applied for the identification of a variety of phenolic compounds in a cocoa sample (Sanchez-Rabaneda and others 2003 Andres-Lacucva and others 2000). [Pg.62]

Researchers in previous studies generally used lst-order kinetics to describe cellulose pyrolysis, but rarely have they examined 2nd-order kinetics. Thus, discussion of our results for untreated samples will concentrate on lst-order rate constants so that our results can be directly compared with results from prior studies. A true reaction order of cellulose pyrolysis based on TGA data is essentially meaningless, however, since mass loss involves complex competing multiple reactions (2,4,8). In addition, reaction order was calculated on a dimensionless mass value rather than on the correct but uncalculable molar concentration term. [Pg.338]

R2SnCl2 +F RSnCl3 + F (R = Ph, Me, n-Bu, f-Bu) 19F and 119Sn NMR. Intermolecular and intramolecular dynamics of a CH2C12 solution of chlorinated organotin compounds and fluoride ions lead to multiple replacement reactions. Complex ions such as [Ph2SnCl3-KFn], n = 1-3 are formed, that are stereochemically rigid at —100 °C and fluxional at — 80 °C. 159... [Pg.385]

With complex or multiple reactions, what product distribution can be obtained in comparison with that from a flow reactor ... [Pg.261]

Production processes for chemical commodities exist often already for decades and are continuously enhanced as shown in the following example from the 1970s. Commodity production processes this time already have been rather complex composed by multiple reactions and interim steps as shown in the following example of Caprolactam production, an intermediate product for Polyamide (Sittig 1972, p. 139) in fig. 35. [Pg.88]

As compared with the other closures discussed in this chapter, computation studies based on the presumed conditional PDF are relatively rare in the literature. This is most likely because of the difficulties of deriving and solving conditional moment equations such as (5.399). Nevertheless, for chemical systems that can exhibit multiple reaction branches for the same value of the mixture fraction,162 these methods may offer an attractive alternative to more complex models (such as transported PDF methods). Further research to extend multi-environment conditional PDF models to inhomogeneous flows should thus be pursued. [Pg.255]

For SDS-protein complexes, the proteins can be derivatized with fluorescent dyes prior to the analysis. Derivatized proteins can be detected in the attomole (amol) level, and because the complex is resolved by sieving, multiple reaction products are detected as peak broadening instead of multiple peaks.19... [Pg.173]

The chemical engineer almost never encounters a single reaction in an ideal single-phase isothermal reactor. Real reactors are extremely complex with multiple reactions, multiple phases, and intricate flow patterns within the reactor and in inlet and outlet streams. An engineer needs enough information from this course to understand the basic concepts of reactions, flow, and heat management and how these interact so that she or he can begin to assemble simple analytical or intuitive models of the process. [Pg.6]

These rates are the rates of production of species A, B, and C (rj = Vjr) so these rates are written as negative quantities for reactants and positive quantities for products. This notation quickly becomes cumbersome for complex reaction stoichiometry, and the notation is not directly usable for multiple reaction systems. [Pg.28]


See other pages where Multiple reactions complex is mentioned: [Pg.328]    [Pg.513]    [Pg.14]    [Pg.931]    [Pg.180]    [Pg.119]    [Pg.510]    [Pg.716]    [Pg.393]    [Pg.25]    [Pg.32]    [Pg.36]    [Pg.35]    [Pg.51]    [Pg.240]    [Pg.276]    [Pg.142]    [Pg.198]    [Pg.394]    [Pg.235]    [Pg.226]    [Pg.151]    [Pg.119]    [Pg.310]    [Pg.401]   


SEARCH



Multiple reactions

Reaction multiple reactions

© 2024 chempedia.info