Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multiple-pulse sequence heteronuclear sequences

As demonstrated by Hartmann and Hahn (1962), energy-matched conditions can be created with the help of rf irradiation that generates matched effective fields (see Section IV). Although Hartmann and Hahn focused on applications in the solid state in their seminal paper, they also reported the first heteronuclear polarization-transfer experiments in the liquid state that were based on matched rf fields. A detailed analysis of heteronuclear Hartmann-Hahn transfer between scalar coupled spins was given by Muller and Ernst (1979) and by Chingas et al. (1981). Homonuclear Hartmann-Hahn transfer in liquids was first demonstrated by Braunschweiler and Ernst (1983). However, Hartmann-Hahn-type polarization-transfer experiments only found widespread application when robust multiple-pulse sequences for homonuclear and heteronuclear Hartmann-Hahn experiments became available (Bax and Davis, 1985b Shaka et al., 1988 Glaser and Drobny, 1990 Brown and Sanctuary, 1991 Ernst et al., 1991 Kadkhodaei et al., 1991) also see Sections X and XI). [Pg.61]

Although in general, only one multiple-pulse sequence is applied to homonuclear spin systems, it can be useful to apply different multiple-pulse sequences to several nuclear species at the same time by using separate rf channels. In heteronuclear Hartmann-Hahn experiments, the same multiple-pulse sequence is usually applied simultaneously to two or more nuclear species. However, some selective homonuclear Hartmann-Hahn experiments are also based on the simultaneous irradiation of a multiple-pulse sequence at two or more different frequencies (see Section X). If only a single homonuclear rf channel is used, this can be achieved experimentally by adding an amplitude or phase modulation to the sequence, in order to create appropriate irradiation sidebands (Konrat... [Pg.77]

In heteronuclear Hartmann-Hahn experiments, where two (or more) nuclear species are irradiated simultaneously with the same multiple-pulse sequence, the heteronuclear coupling terms have the following form in the toggling frame ... [Pg.90]

For the practical implementation of Hartmann-Hahn experiments, the type of multiple-pulse sequence can be important (see Section III). Continuous wave (CW) irradiation represents the simplest homonuclear Hartmann-Hahn mixing sequence (Bax and Davis, 1985a). Simultaneous CW irradiation at the resonance frequencies of two heteronuclear spins is the simplest heteronuclear Hartmann-Hahn mixing sequence (Hartmann and Hahn, 1962). [Pg.104]

Phase-modulated multiple-pulse sequences with constant rf amplitude form a large class of homonuclear and heteronuclear Hartmann-Hahn sequences. WALTZ-16 (Shaka et al., 1983b) and DIPSI-2 (Shaka et al., 1988) are examples of windowless, phase-alternating Hartmann-Hahn sequences (see Table II). [Pg.104]

Homonuclear or heteronuclear Hartmann-Hahn mixing periods are versatile experimental building blocks that form the basis of a large number of combination experiments (see Section XIII). In practice, the actual multiple-pulse sequence that creates Hartmann-Hahn mixing conditions can usually be treated as a black box with characteristic properties. In this section, design principles and practical approaches for the development of Hartmann-Hahn mixing sequences are discussed. [Pg.139]

Important guidelines for the construction of a multiple-pulse sequence with desired properties are provided by average Hamiltonian theory (see Section IV). The effective Hamiltonian created by the sequence must meet a number of criteria (see Section IX). Most importantly, spins with different resonance frequencies, that is, with different offsets and Vj from a given carrier frequency, must effectively be energy matched in order to allow Hartmann-Hahn transfer. This can be achieved if the derivative of the effective field with respect to offset vanishes, which is identical to the Waugh criterion for efficient heteronuclear decoupling... [Pg.139]

In the case of heteronuclear Hartmann-Hahn experiments, independent, uncorrelated rf-field distributions must be assumed for the different nuclear species if two separate rf coils are used (Ernst et al., 1991 Schwendinger et al., 1994 also see Section XI). Multiple-pulse sequences that are compensated for rf inhomogeneity are also relatively insensitive to a miscalibration of the experimental rf amplitude Quality factors for the sensitivity of Hartmann-Hahn transfer to other imperfections, such as... [Pg.154]

In addition to multiple-pulse sequences that were derived from heteronuclear decoupling experiments, a number of rf sequences have been specifically developed for homonuclear Hartmann-Hahn transfer. A systematic search for phase-alternated composite 180° pulses R expanded in an MLEV-16 supercycle was reported by Glaser and Drobny (1990). Several clusters of good sequences were found for the transfer of magnetization in the offset range of 0.Av. However, substantially improved Hartmann-Hahn sequences were found after the condition that restricted R to be an exact composite 180° pulse on-resonance was lifted. For example, the GD-2 sequence is based on R = 290° 390° 290°, which is a composite 190° pulse on-resonance and is one of the best sequences based on composite pulses of the form R = (Glaser and Drobny, 1990). [Pg.171]

Only recently, new multiple-pulse sequences that were developed specifically for broadband heteronuclear Hartmann-Hahn experiments in liquids were reported. The SHR-1 sequence developed by Sunitha Bai et al. (1994) consists of a windowless phase-alternated composite pulse R, which is expanded according to the MLEV-8 supercycle. R was optimized based on a phase-distortionless single-spin 180° composite pulse and is related to the composite pulses used in DIPSI-1 (Shaka et al., 1988) and the composite pulses in the homonuclear IICT-1 sequence (Sunitha Bai and Ramachandran, 1993). The bandwidth of the SHR-1 sequence is comparable to the bandwidth of DIPSI-3, albeit with a slightly reduced transfer efficiency (Sunitha Bai et al., 1994 Fig. 33F). [Pg.203]

Broadband Hartmann-Hahn sequences, such as DIPSI-2 or WALTZ-16, can be made band-selective by reducing the rf amplitude of the sequences (Brown and Sanctuary, 1991). Richardson et al. (1993) used a low-amplitude WALTZ-17 sequence for band-selective heteronuclear Hartmann-Hahn transfer between N and in order to minimize simultaneous homonuclear Hartmann-Hahn transfer between and The DIPSI-2 sequence was successfully used by Gardner and Coleman (1994) for band-selective Hartmann-Hahn transfer between C d and H spins. So far, no crafted multiple-pulse sequences have been reported that were optimized specifically for band-selective heteronuclear Hartmann-Hahn transfer. Based on the results of Section X, it is expected that such sequences with well defined regions for coherence transfer and effective homonuclear decoupling will result in increased sensitivity of band-selective heteronuclear Hartmann-Hahn experiments. [Pg.208]

Since the first description of the Hartmann-Hahn transfer in liquids, spectroscopists have been fascinated by this technique. Many theoretical and practical aspects have been thoroughly investigated by several groups. With the development of robust multiple-pulse sequences, homonuclear and heteronuclear Hartmann-Hahn transfer has become one of the most useful experimental building blocks in high-resolution NMR. [Pg.238]

Figure 1 Heteronuclear multiple quantum correlation (HMQC) pulse sequences (a) sequence for small J(I,S) values (b) for larger, resolved J(1,S) values and phase-sensitive presentation (c) zero or double quantum variant for the determination of the /-spin-multiplicity (d) with refocusing and optional 5-spin... Figure 1 Heteronuclear multiple quantum correlation (HMQC) pulse sequences (a) sequence for small J(I,S) values (b) for larger, resolved J(1,S) values and phase-sensitive presentation (c) zero or double quantum variant for the determination of the /-spin-multiplicity (d) with refocusing and optional 5-spin...
HC HMQC (heteronuclear multiple quantum coherence) and HC HSQC (heteronuclear single quantum coherence) are the acronyms of the pulse sequences used for inverse carbon-proton shift correlations. These sensitive inverse experiments detect one-bond carbon-proton connectivities within some minutes instead of some hours as required for CH COSY as demonstrated by an HC HSQC experiment with a-pinene in Fig. 2.15. [Pg.36]

Figure 7.14 Pulse sequence for the HMBCS (heteronuclear multiple-bond correlation, selective) experiment, which uses advantageously a 270° Gaussian pulse for exciting the carbonyl resonances. It is also called the semisoft inverse COLOC. (Reprinted from Mag. Reson. Chem. 29, H. Kessler et al., 527, copyright (1991), with permission from John Wiley and Sons Limited, Baffins Lane, Chichester, Sussex P019 lUD, England.)... Figure 7.14 Pulse sequence for the HMBCS (heteronuclear multiple-bond correlation, selective) experiment, which uses advantageously a 270° Gaussian pulse for exciting the carbonyl resonances. It is also called the semisoft inverse COLOC. (Reprinted from Mag. Reson. Chem. 29, H. Kessler et al., 527, copyright (1991), with permission from John Wiley and Sons Limited, Baffins Lane, Chichester, Sussex P019 lUD, England.)...
To be fair, we must point out that this type of experiment is extremely sensitive to the parameters chosen. Various pulse sequences are available, including the original COLOC (Correlation by means of Long range Coupling) as well as experiments variously referred to as HMBC (Heteronuclear Multiple-Bond Correlation) and HMQC (Heteronuclear Multiple-Quantum Correlation). Depending on the parameters chosen, it is often not possible to suppress correlations due to one-bond coupling ... [Pg.45]

J splittings cannot be directly resolved. In addition to the obvious advantage of providing a map of chemical bonds between the spins, /-based transfers do not require spin-locking and are not disturbed by molecular motions. The major drawback of polarization transfer through J coupling is that the delays involved in the pulse sequences, such as insensitive nuclei enhanced by polarization transfer (INEPT) [233] or heteronuclear multiple-quantum coherence (HMQC)... [Pg.171]

Fig. 10.14. Gradient-enhanced HMQC pulse sequence described in 1991 by Hurd and John derived from the earlier non-gradient experiment of Bax and Subramanian. For 1H-13C heteronuclear shift correlation, the gradient ratio, G1 G2 G3 should be 2 2 1 or a comparable ratio. The pulses sequence creates heteronuclear multiple quantum of orders zero and two with the application of the 90° 13C pulse. The multiple quantum coherence evolves during the first half of ti. The 180° proton pulse midway through the evolution period decouples proton chemical shift evolution and interchanges the zero and double quantum coherence terms. Antiphase proton magnetization is created by the second 90° 13C pulse that is refocused during the interval A prior to detection and the application of broadband X-decoupling. Fig. 10.14. Gradient-enhanced HMQC pulse sequence described in 1991 by Hurd and John derived from the earlier non-gradient experiment of Bax and Subramanian. For 1H-13C heteronuclear shift correlation, the gradient ratio, G1 G2 G3 should be 2 2 1 or a comparable ratio. The pulses sequence creates heteronuclear multiple quantum of orders zero and two with the application of the 90° 13C pulse. The multiple quantum coherence evolves during the first half of ti. The 180° proton pulse midway through the evolution period decouples proton chemical shift evolution and interchanges the zero and double quantum coherence terms. Antiphase proton magnetization is created by the second 90° 13C pulse that is refocused during the interval A prior to detection and the application of broadband X-decoupling.
Fig. 10.15. Pulse sequence for the multiplicity-edited gradient HSQC experiment. Heteronuclear single quantum coherence is created by the first INEPT step within the pulse sequence, followed by the evolution period, t . Following evolution, the heteronuclear single quantum coherence is reconverted to observable proton magnetization by the reverse INEPT step. The simultaneous 180° XH and 13C pulses flanked by the delays, A = l/2( 1 edits magnetization inverting signals for methylene resonances, while leaving methine and methyl signals with positive phase (Fig. 16A). Eliminating this pulse sequence element affords a heteronuclear shift correlation experiment in which all resonances have the same phase (Fig. 16B). Fig. 10.15. Pulse sequence for the multiplicity-edited gradient HSQC experiment. Heteronuclear single quantum coherence is created by the first INEPT step within the pulse sequence, followed by the evolution period, t . Following evolution, the heteronuclear single quantum coherence is reconverted to observable proton magnetization by the reverse INEPT step. The simultaneous 180° XH and 13C pulses flanked by the delays, A = l/2( 1 edits magnetization inverting signals for methylene resonances, while leaving methine and methyl signals with positive phase (Fig. 16A). Eliminating this pulse sequence element affords a heteronuclear shift correlation experiment in which all resonances have the same phase (Fig. 16B).
Using strychnine (1) as a model compound, a pair of HSQC spectra are shown in Fig. 10.16. The top panel shows the HSQC spectrum of strychnine without multiplicity editing. All resonances have positive phase. The pulse sequence used is that shown in Fig. 10.15 with the pulse sequence operator enclosed in the box eliminated. In contrast, the multiplicity-edited variant of the experiment is shown in the bottom panel. The pulse sequence operator is comprised of a pair of 180° pulses simultaneously applied to both H and 13C. These pulses are flanked by the delays, A = l/2(xJcii), which invert the magnetization for the methylene signals (red contours in Fig. 10.16B), while leaving methine and methyl resonances (positive phase, black contours) unaffected. Other less commonly used direct heteronuclear shift correlation experiments have been described in the literature [47]. [Pg.294]

Fig. 1. Pulse sequences modified for multiple selective excitation. I ID TOCSY, II het-eronuclear ID NOE, III ID INADEQUATE, IVa heteronuclear ID COSY (optimized to detect Jch), IVb heteronuclear ID COSY (optimized to detect "Jch), V 2D TOCSY-COSY, Via 2D HMBC (designed to detect heteronuclear long-range couplings "Jch only), VIh 2D HMBC (extended pulse sequence to detect both heteronuclear long-range "Jch and... Fig. 1. Pulse sequences modified for multiple selective excitation. I ID TOCSY, II het-eronuclear ID NOE, III ID INADEQUATE, IVa heteronuclear ID COSY (optimized to detect Jch), IVb heteronuclear ID COSY (optimized to detect "Jch), V 2D TOCSY-COSY, Via 2D HMBC (designed to detect heteronuclear long-range couplings "Jch only), VIh 2D HMBC (extended pulse sequence to detect both heteronuclear long-range "Jch and...
We have implemented the principle of multiple selective excitation (pulse sequence II in fig. 1) thereby replacing the low-power CW irradiation in the preparation period of the basic ID experiment by a series of selective 180° pulses. The whole series of selective pulses at frequencies /i, /2, , / is applied for several times in the NOE build-up period to achieve sequential saturation of the selected protons. Compared with the basic heteronuclear ID experiment, in this new variant the sensitivity is improved by the combined application of sequential, selective pulses and the more efficient data accumulation scheme. Quantitation of NOEs is no longer straightforward since neither pure steady-state nor pure transient effects are measured and since cross-relaxation in a multi-spin system after perturbation of a single proton (as in the basic experiment) or of several protons (as in the proposed variant) differs. These attributes make this modified experiment most suitable for the qualitative recognition of heteronuclear dipole-dipole interactions rather than for a quantitative evaluation of the corresponding effects. [Pg.32]


See other pages where Multiple-pulse sequence heteronuclear sequences is mentioned: [Pg.179]    [Pg.56]    [Pg.198]    [Pg.145]    [Pg.192]    [Pg.196]    [Pg.199]    [Pg.202]    [Pg.208]    [Pg.4]    [Pg.509]    [Pg.268]    [Pg.307]    [Pg.267]    [Pg.104]    [Pg.484]    [Pg.76]    [Pg.49]    [Pg.820]    [Pg.271]    [Pg.273]    [Pg.271]    [Pg.78]    [Pg.301]    [Pg.36]    [Pg.39]    [Pg.42]   
See also in sourсe #XX -- [ Pg.198 , Pg.201 , Pg.202 , Pg.205 , Pg.207 ]




SEARCH



Multiple heteronuclear

Multiple pulse sequence

Pulse sequenc

Pulse sequence

© 2024 chempedia.info