Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monomer free-radically polymerized

The elastomer produced in greatest amount is styrene-butadiene rubber (SBR) Annually just under 10 lb of SBR IS produced in the United States and al most all of it IS used in automobile tires As its name suggests SBR is prepared from styrene and 1 3 buta diene It is an example of a copolymer a polymer as sembled from two or more different monomers Free radical polymerization of a mixture of styrene and 1 3 butadiene gives SBR... [Pg.408]

These materials are obtained through free-radical polymerization of acrylic or methacrylic monomers, or of fumarates. [Pg.356]

Poly (methyl Acrylate). The monomer used for preparing poly(methyl acrylate) is produced by the oxidation of propylene. The resin is made by free-radical polymerization initiated by peroxide or azo catalysts and has the following formula ... [Pg.1013]

It might be noted that most (not all) alkenes are polymerizable by the chain mechanism involving free-radical intermediates, whereas the carbonyl group is generally not polymerized by the free-radical mechanism. Carbonyl groups and some carbon-carbon double bonds are polymerized by ionic mechanisms. Monomers display far more specificity where the ionic mechanism is involved than with the free-radical mechanism. For example, acrylamide will polymerize through an anionic intermediate but not a cationic one, A -vinyl pyrrolidones by cationic but not anionic intermediates, and halogenated olefins by neither ionic species. In all of these cases free-radical polymerization is possible. [Pg.349]

The molecular weight distribution for a polymer like that described above is remarkably narrow compared to free-radical polymerization or even to ionic polymerization in which transfer or termination occurs. The sharpness arises from the nearly simultaneous initiation of all chains and the fact that all active centers grow as long as monomer is present. The following steps outline a quantitative treatment of this effect ... [Pg.407]

We begin our discussion of copolymers by considering the free-radical polymerization of a mixture of two monomers. Mi and M2. This is already a narrow view of the entire field of copolymers, since more than two repeat units can be present in copolymers and, in addition, mechanisms other than free-radical chain growth can be responsible for copolymer formation. The essential features of the problem are introduced by this simpler special case, so we shall restrict our attention to this system. [Pg.424]

The free-radical polymerization of acrylic monomers follows a classical chain mechanism in which the chain-propagation step entails the head-to-tail growth of the polymeric free radical by attack on the double bond of the monomer. [Pg.165]

Emulsion Adhesives. The most widely used emulsion-based adhesive is that based upon poly(vinyl acetate)—poly(vinyl alcohol) copolymers formed by free-radical polymerization in an emulsion system. Poly(vinyl alcohol) is typically formed by hydrolysis of the poly(vinyl acetate). The properties of the emulsion are derived from the polymer employed in the polymerization as weU as from the system used to emulsify the polymer in water. The emulsion is stabilized by a combination of a surfactant plus a coUoid protection system. The protective coUoids are similar to those used paint (qv) to stabilize latex. For poly(vinyl acetate), the protective coUoids are isolated from natural gums and ceUulosic resins (carboxymethylceUulose or hydroxyethjdceUulose). The hydroHzed polymer may also be used. The physical properties of the poly(vinyl acetate) polymer can be modified by changing the co-monomer used in the polymerization. Any material which is free-radically active and participates in an emulsion polymerization can be employed. Plasticizers (qv), tackifiers, viscosity modifiers, solvents (added to coalesce the emulsion particles), fillers, humectants, and other materials are often added to the adhesive to meet specifications for the intended appHcation. Because the presence of foam in the bond line could decrease performance of the adhesion joint, agents that control the amount of air entrapped in an adhesive bond must be added. Biocides are also necessary many of the materials that are used to stabilize poly(vinyl acetate) emulsions are natural products. Poly(vinyl acetate) adhesives known as "white glue" or "carpenter s glue" are available under a number of different trade names. AppHcations are found mosdy in the area of adhesion to paper and wood (see Vinyl polymers). [Pg.235]

Acrylamide—acrylic polymers are made by free-radical polymerization of monomers containing the acryHc stmcture, where R is —H or —CH and is —NH2 or a substituted amide or the alkoxy group of an ester. [Pg.32]

A second type of uv curing chemistry is used, employing cationic curing as opposed to free-radical polymerization. This technology uses vinyl ethers and epoxy resins for the oligomers, reactive resins, and monomers. The initiators form Lewis acids upon absorption of the uv energy and the acid causes cationic polymerization. Although this chemistry has improved adhesion and flexibility and offers lower viscosity compared to the typical acrylate system, the cationic chemistry is very sensitive to humidity conditions and amine contamination. Both chemistries are used commercially. [Pg.248]

Photoinitiation. Since photolysis of polysdanes generates sdyl radicals, which can add to carbon—carbon double bonds, these polymers have been used for the free-radical polymerization of unsaturated organic monomers (135,136). Though about one-tenth as efficient as other organic photoinitiators, polysdanes are nevertheless quite insensitive to oxygen effects, which somewhat compensates for their lower efficiency. [Pg.263]

Free-radical polymerization processes are used to produce virtually all commercial methacrylic polymers. Usually free-radical initiators (qv) such as azo compounds or peroxides are used to initiate the polymerizations. Photochemical and radiation-initiated polymerizations are also well known. At a constant temperature, the initial rate of the bulk or solution radical polymerization of methacrylic monomers is first-order with respect to monomer concentration, and one-half order with respect to the initiator concentration. Rate data for polymerization of several common methacrylic monomers initiated with 2,2 -azobisisobutyronitrile [78-67-1] (AIBN) have been deterrnined and are shown in Table 8. [Pg.263]

Free-radical polymerization is the preferred iadustrial route both because monomer purification is not required (109) and because initiator residues need not be removed from polymer for they have minimal effect on polymer properties. [Pg.513]

One of the key benefits of anionic PS is that it contains much lower levels of residual styrene monomer than free-radical PS (167). This is because free-radical polymerization processes only operate at 60—80% styrene conversion, whereas anionic processes operate at >99% styrene conversion. Removal of unreacted styrene monomer from free-radical PS is accompHshed using continuous devolatilization at high temperature (220—260°C) and vacuum. This process leaves about 200—800 ppm of styrene monomer in the product. Taking the styrene to a lower level requires special devolatilization procedures such as steam stripping (168). [Pg.517]

The reversible addition of sodium bisulfite to carbonyl groups is used ia the purification of aldehydes. Sodium bisulfite also is employed ia polymer and synthetic fiber manufacture ia several ways. In free-radical polymerization of vinyl and diene monomers, sodium bisulfite or metabisulfite is frequentiy used as the reduciag component of a so-called redox initiator (see Initiators). Sodium bisulfite is also used as a color preventative and is added as such during the coagulation of crepe mbber. [Pg.150]

Calcium Chelates (Salicylates). Several successhil dental cements which use the formation of a calcium chelate system (96) were developed based on the reaction of calcium hydroxide [1305-62-0] and various phenohc esters of sahcyhc acid [69-72-7]. The calcium sahcylate [824-35-1] system offers certain advantages over the more widely used zinc oxide—eugenol system. These products are completely bland, antibacterial (97), facihtate the formation of reparative dentin, and do not retard the free-radical polymerization reaction of acryhc monomer systems. The principal deficiencies of this type of cement are its relatively high solubihty, relatively low strength, and low modulus. Less soluble and higher strength calcium-based cements based on dimer and trimer acid have been reported (82). [Pg.475]

Photopolymerization reactions are widely used for printing and photoresist appHcations (55). Spectral sensitization of cationic polymerization has utilized electron transfer from heteroaromatics, ketones, or dyes to initiators like iodonium or sulfonium salts (60). However, sensitized free-radical polymerization has been the main technology of choice (55). Spectral sensitizers over the wavelength region 300—700 nm are effective. AcryUc monomer polymerization, for example, is sensitized by xanthene, thiazine, acridine, cyanine, and merocyanine dyes. The required free-radical formation via these dyes may be achieved by hydrogen atom-transfer, electron-transfer, or exciplex formation with other initiator components of the photopolymer system. [Pg.436]

In contrast to ionic chain polymerizations, free radical polymerizations offer a facile route to copolymers ([9] p. 459). The ability of monomers to undergo copolymerization is described by the reactivity ratios, which have been tabulated for many monomer systems for a tabulation of reactivity ratios, see Section 11/154 in Brandrup and Immergut [14]. These tabulations must be used with care, however, as reactivity ratios are not always calculated in an optimum manner [15]. Systems in which one reactivity ratio is much greater than one (1) and the other is much less than one indicate poor copolymerization. Such systems form a mixture of homopolymers rather than a copolymer. Uncontrolled phase separation may take place, and mechanical properties can suffer. An important ramification of the ease of forming copolymers will be discussed in Section 3.1. [Pg.827]

Mixtures of monomers can be used to balance properties. This is possible due to the ease of copolymer formation via free-radical polymerization. The glass transition temperature of acrylic copolymers can be predicted from the weight fraction of the component monomers and the glass transition temperatures of the respective homopolymers [20]. Eq. 3 (commonly known as the Fox equation) is reported ... [Pg.830]

Free radical polymerization is a key method used by the polymer industry to produce a wide range of polymers [37]. It is used for the addition polymerization of vinyl monomers including styrene, vinyl acetate, tetrafluoroethylene, methacrylates, acrylates, (meth)acrylonitrile, (meth)acrylamides, etc. in bulk, solution, and aqueous processes. The chemistry is easy to exploit and is tolerant to many functional groups and impurities. [Pg.324]

Noda and Watanabe [42] reported a simple synthetic procedure for the free radical polymerization of vinyl monomers to give conducting polymer electrolyte films. Direct polymerization in the ionic liquid gives transparent, mechanically strong and highly conductive polymer electrolyte films. This was the first time that ambient-temperature ionic liquids had been used as a medium for free radical polymerization of vinyl monomers. The ionic liquids [EMIM][BF4] and [BP][Bp4] (BP is N-butylpyridinium) were used with equimolar amounts of suitable monomers, and polymerization was initiated by prolonged heating (12 hours at 80 °C) with benzoyl... [Pg.324]


See other pages where Monomer free-radically polymerized is mentioned: [Pg.22]    [Pg.180]    [Pg.22]    [Pg.180]    [Pg.412]    [Pg.271]    [Pg.316]    [Pg.318]    [Pg.170]    [Pg.365]    [Pg.247]    [Pg.364]    [Pg.517]    [Pg.519]    [Pg.227]    [Pg.475]    [Pg.538]    [Pg.539]    [Pg.487]    [Pg.1104]    [Pg.14]    [Pg.271]    [Pg.153]    [Pg.153]    [Pg.153]   
See also in sourсe #XX -- [ Pg.64 ]




SEARCH



Controlled Free Radical Polymerization of Acrylic Monomers

Free Radical Polymerization of vinyl monomers

Free radical polymerization equilibrium monomer concentration

Free radical polymerization monomer addition

Free radical polymerization monomers

Free radical polymerization monomers

Monomer radical

Monomers, polymerization

POLYMERIZATION OF UNSATURATED MONOMERS BY FREE RADICAL MECHANISMS

Polymerization free radical

Vinyl monomers, temperature-controlled free radical polymerization

Zwitterionic monomers free radical polymerizations

© 2024 chempedia.info