Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monochromators function

The first requirement is a source of infrared radiation that emits all frequencies of the spectral range being studied. This polychromatic beam is analyzed by a monochromator, formerly a system of prisms, today diffraction gratings. The movement of the monochromator causes the spectrum from the source to scan across an exit slit onto the detector. This kind of spectrometer in which the range of wavelengths is swept as a function of time and monochromator movement is called the dispersive type. [Pg.57]

Fluorometry and Phosphorimetry. Modem spectrofluorometers can record both fluorescence and excitation spectra. Excitation is furnished by a broad-band xenon arc lamp foUowed by a grating monochromator. The selected excitation frequency, is focused on the sample the emission is coUected at usuaUy 90° from the probe beam and passed through a second monochromator to a photomultiplier detector. Scan control of both monochromators yields either the fluorescence spectmm, ie, emission intensity as a function of wavelength X for a fixed X, or the excitation spectmm, ie, emission intensity at a fixed X as a function of X. Fluorescence and phosphorescence can be distinguished from the temporal decay of the emission. [Pg.319]

The original motivation for the preparation of regular metallic multilayers of carefully controlled periodicity was the need for X-ray reflectors, both to calibrate unknown X-ray wavelengths and to function as large and efficient monochromators, especially for soft X-rays of wavelengths of several A. This was first done by... [Pg.413]

A detachable monochromator (19) developed by Spex Industries, was another approach in minimizing stray light. It is a modified Czerny-Turner spectrograph which can be coupled to the exit slit of a double monochromator and function as a variable bandpass, variable frequency filter. This accessory, while providing the versatility of a triple monochromator, does not add much mechanical and optical complexity and can be removed when not wanted. [Pg.313]

Procedures for determining the spectral responslvlty or correction factors In equation 2 are based on radiance or Irradlance standards, calibrated source-monochromator combinations, and an accepted standard. The easiest measurement procedure for determining corrected emission spectra Is to use a well-characterized standard and obtain an Instrumental response function, as described by equation 3 (17). In this case, quinine sulfate dlhydrate has been extensively studied and Issued as a National Bureau of Standards (NBS) Standard Reference Material (SRM). [Pg.102]

The interaction of adsorbed thiol molecules with gold nanoparticles as a function of the mean particle size has also been studied [180]. Monochromated X-ray Photoelectron Spectroscopy (MXPS) measurements showed the attachment of the thiol sulfur headgroup onto the cluster surface leading to a positive BE shift in the Au 4f corelevel. No line width broadening could be observed indicating that the thiol-gold interaction affects the whole... [Pg.97]

It is instructive to consider a specific example of the method outline above. The triangle fimction (l/l) a (x/l) was discussed in Section 11.1.2. It was pointed out there that it arises in dispersive spectroscopy as the slit function for a monochromator, while in Fourier-transform spectroscopy it is often used as an apodizing function. Its Fourier transform is the function sine2, as shown in Fig. (11-2). The eight points employed to construct the normalized triangle fimction define the matrix... [Pg.175]

Sx, Ti -> Tx). Figures 3.2 and 3.3 illustrate the principle of flash spectroscopy/65 If the second light source is continuous, the change in optical density due to the transient species can be monitored as a function of time at a particular wavelength selected on a monochromator. This type of system is illustrated in Figure 3.4. [Pg.347]

The ellipsometer used in this study is described elsewhere(3). It consists of a Xenon light source, a monochromator, a polarizer, a sample holder, a rotating analyzer and a photomultiplier detector (Figure 1). An electrochemical cell with two windows is mounted at the center. The windows, being 120° apart, provide a 60° angle of incidence for the ellipsometer. A copper substrate and a platinum electrode function as anode and cathode respectively. Both are connected to a DC power supply. The system is automated with a personal computer to collect all experimental data during the deposition. Data analysis is carried out by a Fortran program run on a personal computer. [Pg.170]

Radiations outside the ultraviolet, visible and infrared regions cannot be detected by conventional photoelectric devices. X-rays and y-rays are detected by gas ionization, solid-state ionization, or scintillation effects in crystals. Non-dispersive scintillation or solid-state detectors combine the functions of monochromator and detector by generating signals which are proportional in size to the energy of the incident radiation. These signals are converted into electrical pulses of directly proportional sizes and thence processed to produce a spectrum. For radiowaves and microwaves, the radiation is essentially monochromatic, and detection is by a radio receiver tuned to the source frequency or by a crystal detector. [Pg.283]

What are the components of a monochromator What is the function of each component ... [Pg.237]

Photoionization, as already pointed out, is characterized by a step function for ionization probabiUty versus energy. The change in mode of ionization is thus much more easily detectable than for electron impact which produces only changes of slope. The combination of photon impact ion sources with mass analysis has been a major advance in technique since it has allowed the direct study of formation and breakdown of excited ions. The first account of such an experiment was given by Hurzeler, Inghram and Morrison (1958) who employed the especially convenient Seya-Namioka type of monochromator, which had then just been described, in conjunction with a conventional magnetic sector mass... [Pg.42]


See other pages where Monochromators function is mentioned: [Pg.160]    [Pg.117]    [Pg.117]    [Pg.160]    [Pg.117]    [Pg.117]    [Pg.34]    [Pg.416]    [Pg.665]    [Pg.268]    [Pg.746]    [Pg.777]    [Pg.791]    [Pg.24]    [Pg.177]    [Pg.137]    [Pg.530]    [Pg.303]    [Pg.353]    [Pg.118]    [Pg.27]    [Pg.28]    [Pg.255]    [Pg.123]    [Pg.149]    [Pg.200]    [Pg.49]    [Pg.25]    [Pg.77]    [Pg.254]    [Pg.534]    [Pg.541]    [Pg.158]    [Pg.158]    [Pg.169]    [Pg.40]    [Pg.354]    [Pg.400]    [Pg.43]    [Pg.44]   
See also in sourсe #XX -- [ Pg.3463 ]




SEARCH



Instrumental function monochromators

Monochromate

Monochromator

Monochromators

Monochromic

Plane monochromators instrumental function

© 2024 chempedia.info