Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monazite thorium

Table 6.15 summarizes two sources of information on the annual rate of thorium production, by country. The first three columns give the production rate of monazite concentrates for the more recent years of 1976, 1977, and 1978 [El]. We have estimated total thorium production from a typical monazite thorium content of 6 weight percent (w/o). These columns do not include monazite production in the United States or Soviet Union, nor the small production of other thorium minerals. The last two columns give the U.S. Bureau of Mines figures [Ul] for total thorium production in 1973 and an estimate of total thorium production capacity in 1980, if demand were such as to support it. [Pg.296]

Large deposits of monazite (found on the beaches of Travancore, India and in river sands in Brazil), ahanite (in the western United States), and bastnasite (in Southern California) will supply cerium, thorium, and the other rare-earth metals for many years to come. [Pg.172]

Thorium occurs in thorite and in thorianite. Large deposits of thorium minerals have been reported in New England and elsewhere, but these have not yet been exploited. Thorium is now thought to be about three times as abundant as uranium and about as abundant as lead or molybdenum. Thorium is recovered commercially from the mineral monazite, which contains from 3 to 9% Th02 along with rare-earth minerals. [Pg.174]

The heavy mineral sand concentrates are scmbbed to remove any surface coatings, dried, and separated into magnetic and nonmagnetic fractions (see Separation, magnetic). Each of these fractions is further spHt into conducting and nonconducting fractions in an electrostatic separator to yield individual concentrates of ilmenite, leucoxene, monazite, mtile, xenotime, and zircon. Commercially pure zircon sand typically contains 64% zirconium oxide, 34% siUcon oxide, 1.2% hafnium oxide, and 0.8% other oxides including aluminum, iron, titanium, yttrium, lanthanides, uranium, thorium, phosphoms, scandium, and calcium. [Pg.440]

Several countries supply monazite concentrates for the world market. Extensive deposits along the coast of western AustraUa are worked for ilmenite and are the primary source of world monazite. Other regions of AustraUa, along with India and Brazil, also supply the mineral. Because monazite contains thorium [7440-29-1], India and Brazil have embargoed its export for many years. In the United States, commerce in the mineral is regulated by the Nuclear Regulatory Commission. [Pg.365]

The minerals on which the work was performed during the nineteenth century were indeed rare, and the materials isolated were of no interest outside the laboratory. By 1891, however, the Austrian chemist C. A. von Welsbach had perfected the thoria gas mantle to improve the low luminosity of the coal-gas flames then used for lighting. Woven cotton or artificial silk of the required shape was soaked in an aqueous solution of the nitrates of appropriate metals and the fibre then burned off and the nitrates converted to oxides. A mixture of 99% ThOz and 1% CeOz was used and has not since been bettered. CeOz catalyses the combustion of the gas and apparently, because of the poor thermal conductivity of the ThOz, particles of CeOz become hotter and so brighter than would otherwise be possible. The commercial success of the gas mantle was immense and produced a worldwide search for thorium. Its major ore is monazite, which rarely contains more than 12% ThOz but about 45% LnzOz. Not only did the search reveal that thorium, and hence the lanthanides, are more plentiful than had previously been thought, but the extraction of the thorium produced large amounts of lanthanides for which there was at first little use. [Pg.1228]

The bulk of both monazite and bastnaesite is made up of Ce, La, Nd and Pr (in that order) but, whereas monazite typically contains around 5-10% Th02 and 3% yttrium earths, these and the heavy lanthanides are virtually absent in bastnaesite. Although thorium is only weakly radioactive it is contaminated with daughter elements such as Ra which are more active and therefore require careful handling during the processing of monazite. This is a complication not encountered in the processing of bastnaesite. [Pg.1229]

Thorium is widely but rather sparsely distributed and its only commercial sources are monazite sands (see p. 1229) and the mineral conglomerates of Ontario. The former are found in India, South Africa, Brazil, Australia and Malaysia, and in exceptional cases may contain up to 20% Th02 but more usually contain less than 10%. In the Canadian ores the thorium is present as uranothorite, a mixed Th,U silicate, which is accompanied by pitchblende. Even though present as only 0.4% Th02, the recovery of Th, as a co-product of the recovery of uranium, is viable. [Pg.1255]

The separation of basic precipitates of hydrous Th02 from the lanthanides in monazite sands has been outlined in Fig. 30.1 (p. 1230). These precipitates may then be dissolved in nitric acid and the thorium extracted into tributyl phosphate, (Bu"0)3PO, diluted with kerosene. In the case of Canadian production, the uranium ores are leached with sulfuric acid and the anionic sulfato complex of U preferentially absorbed onto an anion exchange resin. The Th is separated from Fe, A1 and other metals in the liquor by solvent extraction. [Pg.1255]

The most important minerals of the lanthanide elements are monazite (phosphates of La, Ce, Pr, Nd and Sm, as well as thorium oxide) plus cerite and gadolinite (silicates of these elements). Separation is difficult because of the chemical similarity of the lanthanides. Fractional crystallization, complex formation, and selective adsorption and elution using an ion exchange resin (chromatography) are the most successful methods. [Pg.413]

An interesting variant of Group I is the determination of thorium in monazite concentrates.73 Here the variations that may occur in the chemical composition of the matrix leave its x-ray absorbance virtually unaltered. This simplicity is possible because the principal individual rare-earth elements present in the samples lie in the range of atomic numbers from 57 to 60, a range so small as to preclude marked variations in the over-all mass absorption coefficient. [Pg.201]

Eyal Y, Olander DR (1990) Leaching of uraitium and thorium from monazite 1. Initial leaching. Geochim Cosmochim Acta 54 1867-1877... [Pg.357]

Rare Earths are produced primarily from three ores, monazite, xenotime, and bastnasite. Monazite is a phosphate mineral of essentially the cerium subgroup metals and thorium -(light rare Earths, Th) P04. The composition of monazite is reasonably constant throughout the world, with almost 50% of its rare Earth content as cerium and most of the remaining 50% as the other members of the cerium subgroup. Xenotime, like monazite, is a rare Earth orthophosphate but contains up to 63% yttrium oxide and also a markedly higher propor-... [Pg.69]

Thorium is a radioactive metal that occurs naturally in several minerals and rocks usually associated with uranium. However, it is approximately three times more abundant in nature than uranium. On average, soil contains 6 to 10 ppm of thorium. Thorium is most commonly found in the rare-earth thorium-phosphate mineral, monazite, which contains 8% 10% thorium. Current production of thorium is, therefore, linked to the production of monazite, which varies between 5500 and 6500 tonnes per year, with approximately 300 to 600 tonnes of thorium recovered (NEA/IAEA, 2006a). [Pg.130]

Thorium is widely but rather sparsely distributed its only commercial sources are monazite (together with the rare earths) and uranothorite (a mixed Th, U silicate). Uranium is surprisingly common and more abundant than mercury, silver or cadmium in the earth s crust. It is widely distributed and it is found scattered in the faults of old igneous rocks. Concentration by leaching followed by re-precipitation has produced a number of oxide minerals of which the most important are uranite (also called pitchblende) U308 and carnotite, K UC HVO -SF O. [Pg.365]

Thorium is produced in smaller amounts than uranium, but if its production increases in the future the tailings problem will be very similar. The rare earth industry also produces comparable radioactive effluents because many minerals that contain rare earths (e.g., monazites) also include Th and U. [Pg.553]

Thorium is the 37th most abundant element found on Earth, and it makes up about 0.0007% of the Earths crust. It is mostly found in the ores of thorite, thorianite (the oxide of thorium), and monazite sand. It is about as abundant as lead in the Earths crust. As a potential fuel for nuclear reactors, thorium has more energy potential than the entire Earths supply of uranium, coal, and gas combined. [Pg.310]

Linsalata et al. (1985) also estimated that the intake of thorium by populations residing in these parts of Brazil was 6-10 times higher than the population in New York City, as indicated by the analysis of human bones from the two areas. The concentration of thorium in human bones was found to be 100 times higher in high background monazite areas in India than in areas with normal thorium concentration in soils (Pillai and Matkar 1987). [Pg.108]

The element was discovered by Klaproth in 1803 and also in the same year by Berzelius and Hisinger. It is named after the asteroid Ceres. Cerium is found in several minerals often associated with thorium and lanthanum. Some important minerals are monazite, aUanite, cerite, bastnasite, and samarskite. It is the most abundant element among aU rare-earth metals. Its abundance in the earth s crust is estimated to be 66 mg/kg, while its concentration in sea water is approximately 0.0012 microgram/L. [Pg.199]

Europeum generally is produced from two common rare earth minerals monazite, a rare earth-thorium orthophosphate, and bastnasite, a rare earth fluocarbonate. The ores are crushed and subjected to flotation. They are opened by sulfuric acid. Reaction with concentrated sulfuric acid at a temperature between 130 to 170°C converts thorium and the rare earths to their hydrous sulfates. The reaction is exothermic which raises the temperature to 250°C. The product sulfates are treated with cold water which dissolves the thorium and rare earth sulfates. The solution is then treated with sodium sulfate which precipitates rare earth elements by forming rare earth-sodium double salts. The precipitate is heated with sodium hydroxide to obtain rare earth hydrated oxides. Upon heating and drying, cerium hydrated oxide oxidizes to tetravalent ceric(lV) hydroxide. When the hydrated oxides are treated with hydrochloric acid or nitric acid, aU but Ce4+ salt dissolves in the acid. The insoluble Ce4+ salt is removed. [Pg.295]

Gadolinium is produced from both its ores, monazite and bastnasite. After the initial steps of crushing and beneficiation, rare earths in the form of oxides are attacked by sulfuric or hydrochloric acid. Insoluble rare earth oxides are converted into soluble sulfates or chlorides. When produced from monazite sand, the mixture of sand and sulfuric acid is initially heated at 150°C in cast iron vessels. Exothermic reaction sustains the temperature at about 200 to 250°C. The reaction mixture is cooled and treated with cold water to dissolve rare earth sulfates. The solution is then treated with sodium pyrophosphate to precipitate thorium. Cerium is removed next. Treatment with caustic soda solution fohowed by air drying converts the metal to cerium(lV) hydroxide. Treatment with hydrochloric or nitric acid sol-... [Pg.303]

Lanthanum is most commonly obtained from the two naturally occurring rate-earth minerals, monazite and bastnasite. Monazite is a rare earth-thorium phosphate that typically contains lanthanum between 15 to 25%. Bastnasite is a rare earth-fluocarbonate-type mineral in which lanthanum content may vary, usually between 8 to 38%. The recovery of the metal from either of its ores involves three major steps (i) extraction of all rare-earths combined together from the non-rare-earth components of the mineral, (ii) separation or isolation of lanthanum from other lanthanide elements present... [Pg.444]

Heating the ore with sulfuric acid converts neodymium to its water soluble sulfate. The product mixture is treated with excess water to separate neodymium as soluble sulfate from the water-insoluble sulfates of other metals, as well as from other residues. If monazite is the starting material, thorium is separated from neodymium and other soluble rare earth sulfates by treating the solution with sodium pyrophosphate. This precipitates thorium pyrophosphate. Alternatively, thorium may be selectively precipitated as thorium hydroxide by partially neutralizing the solution with caustic soda at pH 3 to 4. The solution then is treated with ammonium oxalate to precipitate rare earth metals as their insoluble oxalates. The rare earth oxalates obtained are decomposed to oxides by calcining in the presence of air. Composition of individual oxides in such rare earth oxide mixture may vary with the source of ore and may contain neodymium oxide, as much as 18%. [Pg.599]

Samarium occurs in nature widely distributed but in trace quantities, always associated with other rare earth metals. The two most important minerals are (i) monazite, which is an orthophosphate of thorium and the rare earths and (ii) bastanasite, which is a rare earth fluocarbonate. The samarium content of these ores is about 2%, as oxide. It also is found in precambri-an granite rocks, shales, and certain minerals, such as xenotime and basalt. Its abundance in the earth s crust is estimated to be 7.05 mg/kg. [Pg.805]

The monazite sand is heated with sulfuric acid at about 120 to 170°C. An exothermic reaction ensues raising the temperature to above 200°C. Samarium and other rare earths are converted to their water-soluble sulfates. The residue is extracted with water and the solution is treated with sodium pyrophosphate to precipitate thorium. After removing thorium, the solution is treated with sodium sulfate to precipitate rare earths as their double sulfates, that is, rare earth sulfates-sodium sulfate. The double sulfates are heated with sodium hydroxide to convert them into rare earth hydroxides. The hydroxides are treated with hydrochloric or nitric acid to solubihze all rare earths except cerium. The insoluble cerium(IV) hydroxide is filtered. Lanthanum and other rare earths are then separated by fractional crystallization after converting them to double salts with ammonium or magnesium nitrate. The samarium—europium fraction is converted to acetates and reduced with sodium amalgam to low valence states. The reduced metals are extracted with dilute acid. As mentioned above, this fractional crystallization process is very tedious, time-consuming, and currently rare earths are separated by relatively easier methods based on ion exchange and solvent extraction. [Pg.806]

Large thorium deposits have heen found in many parts of the world. It occurs in minerals thorite, ThSi04, and thorianite, Th02"U02. Thorium also is found in mineral monazite which contains between 3 to 9% Th02. Th02 is the principal source of commercial thorium. Abundance of thorium in earth s crust is estimated at about 9.6 mg/kg. Thorium and uranium are believed to have contributed much of the internal heat of the earth due to their radioactive emanations since earth s formation. [Pg.928]

Thorium is recovered mostly from monazite, which is a phosphate mineral of the light-weight rare earths. Monazite occurs as sand associated with sih-ca and a few other minerals in smaller proportions. [Pg.928]


See other pages where Monazite thorium is mentioned: [Pg.3841]    [Pg.294]    [Pg.274]    [Pg.413]    [Pg.3841]    [Pg.294]    [Pg.274]    [Pg.413]    [Pg.88]    [Pg.396]    [Pg.365]    [Pg.354]    [Pg.44]    [Pg.57]    [Pg.70]    [Pg.534]    [Pg.314]    [Pg.6]    [Pg.34]    [Pg.35]    [Pg.70]    [Pg.83]    [Pg.83]    [Pg.85]    [Pg.107]    [Pg.445]    [Pg.599]   
See also in sourсe #XX -- [ Pg.4 , Pg.227 ]

See also in sourсe #XX -- [ Pg.4 , Pg.227 ]




SEARCH



Monazite

© 2024 chempedia.info