Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molybdenum catalysts, oxidation

The first description of a synergetic effect due to a mixed cobalt-molybdenum catalyst (oxides and sulfides) was in 1933 by Pease and Keithon (11) at the Princeton University. Their catalytic system was active for the HDS of a mixture of benzene and thiophene. However, difficulty in reproducing their results already pointed out the complexity of this promotion effect, highly dependent on the conditions of preparation and pretreatment and the experimental conditions. [Pg.1547]

Patents claiming specific catalysts and processes for thek use in each of the two reactions have been assigned to Japan Catalytic (45,47—49), Sohio (50), Toyo Soda (51), Rohm and Haas (52), Sumitomo (53), BASF (54), Mitsubishi Petrochemical (56,57), Celanese (55), and others. The catalysts used for these reactions remain based on bismuth molybdate for the first stage and molybdenum vanadium oxides for the second stage, but improvements in minor component composition and catalyst preparation have resulted in yields that can reach the 85—90% range and lifetimes of several years under optimum conditions. Since plants operate under more productive conditions than those optimum for yield and life, the economically most attractive yields and productive lifetimes maybe somewhat lower. [Pg.152]

ARCO has developed a coproduct process which produces KA along with propylene oxide [75-56-9] (95—97). Cyclohexane is oxidized as in the high peroxide process to maximize the quantity of CHHP. The reactor effluent then is concentrated to about 20% CHHP by distilling off unreacted cyclohexane and cosolvent tert-huty alcohol [75-65-0]. This concentrate then is contacted with propylene [115-07-1] in another reactor in which the propylene is epoxidized with CHHP to form propylene oxide and KA. A molybdenum catalyst is employed. The product ratio is about 2.5 kg of KA pet kilogram of propylene oxide. [Pg.242]

The conversion of CO to CO2 can be conducted in two different ways. In the first, gases leaving the gas scmbber are heated to 260°C and passed over a cobalt—molybdenum catalyst. These catalysts typically contain 3—4% cobalt(II) oxide [1307-96-6] CoO 13—15% molybdenum oxide [1313-27-5] MoO and 76—80% alumina, JSifDy and are offered as 3-mm extmsions, SV about 1000 h . On these catalysts any COS and CS2 are converted to H2S. Operating temperatures are 260—450°C. The gases leaving this shift converter are then scmbbed with a solvent as in the desulfurization step. After the first removal of the acid gases, a second shift step reduces the CO content in the gas to 0.25—0.4%, on a dry gas basis. The catalyst for this step is usually Cu—Zn, which may be protected by a layer of ZnO. [Pg.423]

Natural gas contains both organic and inorganic sulfur compounds that must be removed to protect both the reforming and downstream methanol synthesis catalysts. Hydrodesulfurization across a cobalt or nickel molybdenum—zinc oxide fixed-bed sequence is the basis for an effective purification system. For high levels of sulfur, bulk removal in a Hquid absorption—stripping system followed by fixed-bed residual clean-up is more practical (see Sulfur REMOVAL AND RECOVERY). Chlorides and mercury may also be found in natural gas, particularly from offshore reservoirs. These poisons can be removed by activated alumina or carbon beds. [Pg.276]

In addition to these principal commercial uses of molybdenum catalysts, there is great research interest in molybdenum oxides, often supported on siHca, ie, MoO —Si02, as partial oxidation catalysts for such processes as methane-to-methanol or methane-to-formaldehyde (80). Both O2 and N2O have been used as oxidants, and photochemical activation of the MoO catalyst has been reported (81). The research is driven by the increased use of natural gas as a feedstock for Hquid fuels and chemicals (82). Various heteropolymolybdates (83), MoO.-containing ultrastable Y-zeoHtes (84), and certain mixed metal molybdates, eg, MnMoO Ee2(MoO)2, photoactivated CuMoO, and ZnMoO, have also been studied as partial oxidation catalysts for methane conversion to methanol or formaldehyde (80) and for the oxidation of C-4-hydrocarbons to maleic anhydride (85). Heteropolymolybdates have also been shown to effect ethylene (qv) conversion to acetaldehyde (qv) in a possible replacement for the Wacker process. [Pg.477]

Synthesis. The total aimual production of PO in the United States in 1993 was 1.77 biUion kg (57) and is expected to climb to 1.95 biUion kg with the addition of the Texaco plant (Table 1). There are two principal processes for producing PO, the chlorohydrin process favored by The Dow Chemical Company and indirect oxidation used by Arco and soon Texaco. Molybdenum catalysts are used commercially in indirect oxidation (58—61). Capacity data for PO production are shown in Table 1 (see Propylene oxide). [Pg.348]

After epoxidation, propylene oxide, excess propylene, and propane are distilled overhead. Propane is purged from the process propylene is recycled to the epoxidation reactor. The bottoms Hquid is treated with a base, such as sodium hydroxide, to neutralize the acids. Acids in this stream cause dehydration of the 1-phenylethanol to styrene. The styrene readily polymerizes under these conditions (177—179). Neutralization, along with water washing, allows phase separation such that the salts and molybdenum catalyst remain in the aqueous phase (179). Dissolved organics in the aqueous phase ate further recovered by treatment with sulfuric acid and phase separation. The organic phase is then distilled to recover 1-phenylethanol overhead. The heavy bottoms are burned for fuel (180,181). [Pg.140]

The device for nitrogen oxides based on chemiluminescence measures the nitrogen monoxide concentration. The same equipment can be used to measure the concentration of nitrogen dioxide. Nitrogen dioxide is reduced to nitrogen monoxide in a converter by a molybdenum catalyst. In order to... [Pg.1301]

There are several ways to produce acrylic acid. Currently, the main process is the direct oxidation of acrolein over a combination molybdenum-vanadium oxide catalyst system. In many acrolein processes, acrylic acid is made the main product by adding a second reactor that oxidizes acrolein to the acid. The reactor temperature is approximately 250°C ... [Pg.217]

The use of molybdenum catalysts in combination with hydrogen peroxide is not so common. Nevertheless, there are a number of systems in which molybdates have been employed for the activation of hydrogen peroxide. A catalytic amount of sodium molybdate in combination with monodentate ligands (e.g., hexaalkyl phosphorus triamides or pyridine-N-oxides), and sulfuric acid allowed the epoxidation of simple linear or cyclic olefins [46]. The selectivity obtained by this method was quite low, and significant amounts of diol were formed, even though highly concentrated hydrogen peroxide (>70%) was employed. [Pg.196]

The reaction scheme is rather complex also in the case of the oxidation of o-xylene (41a, 87a), of the oxidative dehydrogenation of n-butenes over bismuth-molybdenum catalyst (87b), or of ethylbenzene on aluminum oxide catalysts (87c), in the hydrogenolysis of glucose (87d) over Ni-kieselguhr or of n-butane on a nickel on silica catalyst (87e), and in the hydrogenation of succinimide in isopropyl alcohol on Ni-Al2Oa catalyst (87f) or of acetophenone on Rh-Al203 catalyst (87g). Decomposition of n-and sec-butyl acetates on synthetic zeolites accompanied by the isomerization of the formed butenes has also been the subject of a kinetic study (87h). [Pg.24]

Catalysts in an oxidized state showed high activity in the oxidation of carbon monoxide [nickel catalysts (146) ] and hydrogen [molybdenum catalysts (146a)]. [Pg.192]

Computerized IR Studies of Cobalt-Molybdenum-Aluminum Oxide HydrodesuUurization Catalysts... [Pg.422]

Finally, it is appropriate to close this chapter with an example from the roots of fine chemicals the dyestuff, indigo. Manufacture of indigo involves chemistry (see Fig. 2.15) which has hardly changed from the time of the first commercial synthesis more than a hundred years ago (see earlier). Mitsui Toatsu has developed a two-step process in which indole is produced by vapour-phase reaction of ethylene glycol with aniline over a supported silver catalyst (Inoue et al., 1994). Subsequent liquid-phase oxidation of the indole, with an alkyl hydroperoxide in the presence of a soluble molybdenum catalyst, affords indigo. [Pg.55]

The formation of molybdenum complexes with diols (formed by olefin oxidation) was proved for the use of the molybdenum catalysts. Therefore, the participation of these complexes in the developed epoxidation reaction was assumed [242]. [Pg.417]

Adkins-Peterson The oxidation of methanol to formaldehyde, using air and a mixed molybdenum/iron oxide catalyst. Not an engineered process, but the reaction which formed the basis of the Formox process. [Pg.13]

Another SIMS study on model systems concerns molybdenum sulfide catalysts. The removal of sulfur from heavy oil fractions is carried out over molybdenum catalysts promoted with cobalt or nickel, in processes called hydrodesulfurization (HDS) [17]. Catalysts are prepared in the oxidic state but have to be sulfided in a mixture of H2S and H2 in order to be active. SIMS sensitively reveals the conversion of Mo03 into MoSi, in model systems of MoCf supported on a thin layer of Si02 [21]. [Pg.107]

Mossbauer spectroscopy is one of the techniques that is relatively little used in catalysis. Nevertheless, it has yielded very useful information on a number of important catalysts, such as the iron catalyst for Fischer-Tropsch and ammonia synthesis, and the cobalt-molybdenum catalyst for hydrodesulfurization reactions. The technique is limited to those elements that exhibit the Mossbauer effect. Iron, tin, iridium, ruthenium, antimony, platinum and gold are the ones relevant for catalysis. Through the Mossbauer effect in iron, one can also obtain information on the state of cobalt. Mossbauer spectroscopy provides valuable information on oxidation states, magnetic fields, lattice symmetry and lattice vibrations. Several books on Mossbauer spectroscopy [1-3] and reviews on the application of the technique on catalysts [4—8] are available. [Pg.128]

We begin with the structure of a noble metal catalyst. The emphasis is on the preparation of rhodium on aluminum oxide and the nature of the metal-support interaction. Next we focus on a promoted surface in a review of potassium on noble metals. This section illustrates how single crystal techniques have been applied to investigate to what extent promoters perturb the surface of a catalyst. The third study deals with the sulfidic cobalt-molybdenum catalysts used in hydrotreating reactions. Here we are concerned with the composition and structure of the catalytically active... [Pg.246]

The newest and most commercially successful process involves vapor phase oxidation of propylene to AA followed by esterification to the acrylate of your choice. Chemical grade propylene (90—95% purity) is premixed with steam and oxygen and then reacted at 650—700°F and 60—70 psi over a molybdate-cobait or nickel metal oxide catalyst on a silica support to give acrolein (CH2=CH-CHO), an intermediate oxidation product on the way to AA. Other catalysts based on cobalt-molybdenum vanadium oxides are sometimes used for the acrolein oxidation step. [Pg.285]

Molybdenum In its pure form, without additions, it is the most efficient catalyst of all the easily obtainable and reducible substances, and it is less easily poisoned than iron. It catalyzes in another way than iron, insofar as it forms analytically easily detectable amounts of metal nitrides (about 9% nitrogen content) during its catalytic action, whereas iron does not form, under synthesis conditions, analytically detectable quantities of a nitride. In this respect, molybdenum resembles tungsten, manganese and uranium which all form nitrides during their operation, as ammonia catalysts. Molybdenum is clearly promoted by nickel, cobalt and iron, but not by oxides such as alumina. Alkali metals can act favorably on molybdenum, but oxides of the alkali metals are harmful. Efficiency, as pure molybdenum, 1.5%, promoted up to 4% ammonia. [Pg.95]

Molybdenum(VI) oxide is used in catalyst compositions to carry out desulfurization of petroleum feedstocks and to remove nitrogen-containing compounds from petroleum fractions. Other uses of this oxide include preparation of various molybdate salts and as reagents for chemical analyses. [Pg.593]


See other pages where Molybdenum catalysts, oxidation is mentioned: [Pg.213]    [Pg.477]    [Pg.271]    [Pg.380]    [Pg.2097]    [Pg.183]    [Pg.278]    [Pg.281]    [Pg.423]    [Pg.427]    [Pg.533]    [Pg.729]    [Pg.1084]    [Pg.1095]    [Pg.170]    [Pg.139]    [Pg.17]    [Pg.2]    [Pg.103]   


SEARCH



Catalyst with nickel/molybdenum mixed oxid

Iron-molybdenum oxide catalyst

Iron-molybdenum oxide catalyst mechanism

Iron-molybdenum oxide catalyst studies

Metal oxides, catalysts Molybdenum

Molybdenum based oxides catalysts

Molybdenum catalysts

Molybdenum complexes oxidation catalysts

Molybdenum oxide catalyst

Molybdenum oxide catalyst, dehydrogenation

Molybdenum oxide, catalyst olefin metathesis

Molybdenum-based catalyst systems oxide

Molybdenum-nickel-aluminum oxide catalyst

Molybdenum-uranium oxide catalyst

Nickel-molybdenum oxide catalyst

Oxides molybdenum oxide

Supported catalysts molybdenum oxide

© 2024 chempedia.info