Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molybdenum alumina-supported catalyst

Table V shows the results obtained for the carbonylation of dimethyl ether and methyl acetate with molybdenum catalysts supported on various carrier materials. In the case of dimethyl ether carbonylation, molybdenum-activated carbon catalyst gave methyl acetate with an yield of 5.2% which was about one-third of the activity of nickel-activated carbon catalyst. Silica gel- or y-alumina-supported catalyst gave little carbonylated product. Similar results were obtained in the carbonylation of methyl acetate. The carbonylation activity occured only when molybdenum was supported on activated carbon, and it was about half the activity of nickel-activated carbon catalyst. Table V shows the results obtained for the carbonylation of dimethyl ether and methyl acetate with molybdenum catalysts supported on various carrier materials. In the case of dimethyl ether carbonylation, molybdenum-activated carbon catalyst gave methyl acetate with an yield of 5.2% which was about one-third of the activity of nickel-activated carbon catalyst. Silica gel- or y-alumina-supported catalyst gave little carbonylated product. Similar results were obtained in the carbonylation of methyl acetate. The carbonylation activity occured only when molybdenum was supported on activated carbon, and it was about half the activity of nickel-activated carbon catalyst.
Impregnation of cobalt and molybdenum (without sodium) increases largely the isomerizing activity of the catalyst the /3-pinene is then completely converted. The catalysts prepared with sodium molybdate and sodium hydroxide (Co-Mo-Na and Na-Co-Mo-Na) have lower isomerizing activities while their HDS activities are significantly increased. As in the case of alumina supported catalysts the sulfided CoMo phase protected by a double layer of alkaline ions on the carbon support gives the best results in HDS of /3-pinene. The behaviour of this catalyst was examined in desulfurization of the turpentine oil (40% a-pinene, 25% /3-pinene, 25% A -carene and 10% camphene + dipentene + myrcene, 1500 ppm S). The results are recorded in Table 6. [Pg.207]

Early catalysts for acrolein synthesis were based on cuprous oxide and other heavy metal oxides deposited on inert siHca or alumina supports (39). Later, catalysts more selective for the oxidation of propylene to acrolein and acrolein to acryHc acid were prepared from bismuth, cobalt, kon, nickel, tin salts, and molybdic, molybdic phosphoric, and molybdic siHcic acids. Preferred second-stage catalysts generally are complex oxides containing molybdenum and vanadium. Other components, such as tungsten, copper, tellurium, and arsenic oxides, have been incorporated to increase low temperature activity and productivity (39,45,46). [Pg.152]

Catalysts used in hydrotreatment (hydrodesulfurization, HDS) processes are the same as those developed in Germany for coal hydrogenation during World War II. The catalysts should be sulfur-resistant. The cobalt-molybdenum system supported on alumina was found to be an effective catalyst. [Pg.84]

Systematic assessment of alumina-supported cobalt-molybdenum nitride catalyst Relationship between nitriding conditions, innate properties and CO hydrogenation activity... [Pg.245]

Catalysts used for hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) of heavy oil fractions are largely based on alumina-supported molybdenum or tungsten to which cobalt or nickel is added as a promoter [11]. As the catalysts are active in the sulfided state, activation is carried out by treating the oxidic catalyst precursor in a mixture of H2S and H2 (or by exposing the catalyst to the sulfur-containing feed). The function of hydrogen is to prevent the decomposition of the relatively unstable H2S to elemental sulfur, which would otherwise accumulate on the surface of the... [Pg.34]

The sulfidation mechanisms of cobalt- or nickel-promoted molybdenum catalysts are not yet known in the same detail as that of M0O3, but are not expected to be much different, as TPS patterns of Co-Mo/A1203 and Mo/Al203 are rather similar [56J. However, interactions of the promoter elements with the alumina support play an important role in the ease with which Ni and Co convert to the sulfidic state. We come back to this after we have discussed the active phase for the hydrodesulfurization reaction in more detail. [Pg.271]

The high-density polyethylene is linear and can be manufactured by (i) coordination polymerisation of monomer by triethyl aluminium and tritanium chloride, (ii) polymerisation with supported Metal Oxide Catalysts. Such as chromium or molybdenum oxides supported over alumina-silica bases. [Pg.147]

A. Christodoulakis, E. Heracleous, A.A. Lemonidou and S. Boghosian, An operando Raman study of structure and reactivity of alumina-supported molybdenum oxide catalysts for the oxidative dehydrogenation of ethane, J. [Pg.234]

The coals used were PSOC 1098 Illinois 6 and Beulah-Zap North Dakota lignite from the Argonne coal bank. The analytical data of these coals are shown in Table I. The ratio of catalyst to coal was approximately 0.6 mmoles of metal per gram of coal. The organometallic catalysts were molybdenum(II) acetate dimer, Mo2(OAc)4, obtained from Strem, molybdenum(II) allyl dimer Mo2(OAc)4, was prepared by die method of Cotton and Pipal (25). The NiMo supported catalyst was prepared by addition of bis(l,5-cyclooctadiene) Ni(0) (Strem) to sulfided Mo on alumina (. Cp2Mo2( l-SH)2(p.-S)2, referred to as MoS2(OM), was prepared by modification of method of Dubois et al. (26), and Cp2Mo2Co2( i3-S)2(li4-S)(CO)4, CoMo(OM) was prepared by the method of Curtis et al. (27). Pentacarbonyl iron was obtained from Aldrich,... [Pg.274]

Detailed studies were conducted by infrared, TPD, XPS but also by more sophisticated techniques such as CP-MAS solid state NMR or EXAFS, on the various steps by which molybdenum can be deposited on alumina supports starting from [Mo(CO)e]. Indeed, thin films of molybdenum or of its oxides have wide application as gas sensors or solar cell catalysts. [Pg.152]

Initially tests were conducted in glass equipment at atmospheric pressure. It was discovered that a more durable catalyst could be made if the Group VI metal oxide were deposited on an alumina support. The best support found for this reaction was alumina, and the first commercial catalyst was made by impregnating a material very similar to activated alumina 1 with a molybdenum salt solution, followed by drying and calcining at a temperature above 1000° F. Interestingly enough, the supported chromia catalyst which showed a marked superiority over the supported molybdena catalyst at atmospheric... [Pg.45]

The results in Table V show that active disproportionation catalysts are obtained when molybdenum and tungsten hydrocarbyls are supported on silica or alumina. These catalytic systems have not been optimized, and it is highly probable that more active catalysts based on these systems can be obtained. No obvious pattern emerges from the results both silica and alumina supports confer activity on the organometallic compounds which are themselves inactive in homogeneous solution under similar conditions. [Pg.245]

The surface structure and acid sites of alumina-supported molybdenum nitride catalysts have been studied using temperature-programed desorption (TPD), and reduction (TPR), diffuse reflectance infrared spectroscopy, and X-ray diffraction (XRD) analysis. The nitride catalysts were prepared by the temperature-programmed reaction of alumina-supported molybdenum oxide (12.5% and 97.1%) with NH3 at temperatures of 773, 973, and 1173 K. TPR and XRD analyses showed that y-Mo2N was already formed at 973 K. On the basis of NH3-TPD measurements and IR spectroscopy, it was found that Lewis acid sites were predominant over Bronsted acid sites on the surface of Mo2N/A1203. [Pg.454]

Furan is readily hydrogenated, hence it is a source of commercial tetrahydrofuran (THF). Reaction with hydrogen sulfide over alumina produces thiophene. A recent patent describes a catalyst based on cobalt and molybdenum oxides supported on alumina for this reaction (105). Furan undergoes the Diels-Alder reaction with strong dienophiles. Hydrogenation of the product resulting from reaction with maleic anhydride, followed by hydrolysis and neutralization gives a herbicide, Endothall. [Pg.82]

An alumina supported bismuth molybdate catalyst with a bismuth to molybdenum atomic ratio equal to one was examined by high-temperature X-ray diffraction techniques during propylene oxidation (86). Ac-... [Pg.203]

Molybdena catalysts have been with us for quite a long time. The term molybdena is used here to denote a composite catalyst consisting of molybdenum oxide supported on an activated support, commonly alumina. Early it was found that certain transition metals, notably cobalt and nickel, promote the molybdena catalyst for hydrodesulfurization (HDS) reactions. [Pg.266]


See other pages where Molybdenum alumina-supported catalyst is mentioned: [Pg.115]    [Pg.90]    [Pg.449]    [Pg.450]    [Pg.230]    [Pg.343]    [Pg.652]    [Pg.166]    [Pg.82]    [Pg.380]    [Pg.23]    [Pg.155]    [Pg.355]    [Pg.357]    [Pg.19]    [Pg.268]    [Pg.278]    [Pg.278]    [Pg.95]    [Pg.316]    [Pg.337]    [Pg.275]    [Pg.276]    [Pg.194]    [Pg.101]    [Pg.299]    [Pg.57]    [Pg.177]    [Pg.184]    [Pg.295]    [Pg.230]    [Pg.242]    [Pg.130]   
See also in sourсe #XX -- [ Pg.77 ]




SEARCH



Alumina support

Alumina supported

Catalyst supports alumina

Molybdenum catalysts

© 2024 chempedia.info