Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecule detection hydrocarbons

One of the most exciting observations of LEED studies of adsorbed monolayers on low Miller index crystal surfaces is the predominance of ordering within these layers (18). These studies have detected a large number of surface structures formed upon adsorption of different atoms and molecules on a variety of solid surfaces. Conditions range from low temperature, inert gas physisorption to the chemisorption of reactive diatomic gas molecules and hydrocarbons at room temperature and above. A listing of over 200 adsorbed surface structures, mostly of small molecules, adsorbed on low Miller index surfaces can be found in a recent review (/). [Pg.18]

Tobacco leaf has a complicated chemical composition including a variety of polymers and small molecules. The small molecules from tobacco belong to numerous classes of compounds such as hydrocarbons, terpenes, alcohols, phenols, acids, aldehydes, ketones, quinones, esters, nitriles, sulfur compounds, carbohydrates, amino acids, alkaloids, sterols, isoprenoids [48], Amadori compounds, etc. Some of these compounds were studied by pyrolysis techniques. One example of pyrolytic study is that of cuticular wax of tobacco leaf (green and aged), which was studied by Py-GC/MS [49]. By pyrolysis, some portion of cuticular wax may remain undecomposed. The undecomposed waxes consist of eicosyl tetradecanoate, docosyl octadecanoate, etc. The molecules detected in the wax pyrolysates include hydrocarbons (Cz to C34 with a maximum of occurrence of iso-Czi, normal C31 and anti-iso-C32), alcohols (docosanol, eicosanol), acids (hexadecanoic, hexadecenoic, octadecanoic, etc ). The cuticular wax also contains terpenoids such as a- and p-8,13-duvatriene-1,3-diols. By pyrolysis, some of these compounds are not decomposed and others generate closely related products such as seco-cembranoids (5-isopropyl-8,12-dimethyl-3E,8E,12E,14-pentadecatrien-2-one, 3,7,13-trimethyl-10-isopropyl-2,6,11,13-tetradecatrien-1al) and manols. By pyrolysis, c/s-abienol, (12-Z)- -12,14-dien-8a-ol, generates mainly frans-neo-abienol. [Pg.445]

Tsitsishvili et al. have carried out experiments of methanol conversion on H-offretite and TMA-offretite. TMA-offretite zeolites were calcined at 200 and 450 °C. H-offretite zeolites were prepared by ammonium ion-exchange and then calcined at 300 and 450 C. TMA-offretite calcined at 200 C was inactive, probably because the channels are blocked by the large Me N ions so that the acid sites become inaccessible for methanol molecules. A hydrocarbon fraction containing principally propylene, propane, n-butane, and n-butene was obtained in the cases of TMA-offretite and H-offretite calcined at 450 "C. At reaction temperatures lower than 210 C only dimethyl ether was detected. H-offretite zeolites are active in the isomerization of xylenes, indicating that the removal of TMA-cations enlarged the pore opening. [Pg.10]

Because carotenes lack heteroatoms such as oxygen to which protons or sodium cations might attach, no ions are usually detected for these hydrocarbon compounds during ESI in positive mode, although protonated molecules and sodium adducts were observed for xanthophyUs under normal conditions with MeOH, MTBE, and H2O as a mobile phase from HPLC. Addition of a heptafluorobutanol oxidant at 0.1 or 0.5% produced abundant molecular ions of p-carotene with high reproducibility. Substitution of MeOH for acetonitrile produced similar limits of detection. ... [Pg.468]

Recently a novel experimental approach using Schottky diodes with ultra-thin metal films (see Fig. 11) makes direct measurement of reaction-induced hot electrons and holes possible. See for example Refs. 64 and 65. The chemical reaction creates hot charge carriers which travel ballistically from the metal film towards the Schottky interface and are detected as a chemicurrent in the diode. By now, such currents have been observed during adsorption of atomic hydrogen and deuterium on Ag, Cu and Fe surfaces as well as chemisorption of atomic and molecular oxygen, of NO and N02 molecules and of certain hydrocarbons on Ag. Similar results have been found with metal-insulator-metal (MIM) devices, which also show chemi-currents for many exothermic surface reactions.64-68... [Pg.404]

Carotenoids are a group of more than 750 naturally occurring molecules (Britton et al. 2004) of which about 50 occur in the normal human food chain. Of these, only 24 have, so far, been detected in human plasma and tissues (Khachik et al. 1995), with only six molecules being abundant in normal human plasma (for chemical formulas see Figure 13.1). Carotenoids are subdivided into two main classes the carotenes, cyclized (e.g., P-carotene) or uncyclized (e.g., lycopene) hydrocarbons, and the xanthophylls, which have hydroxyl groups (e.g., lutein and zeaxanthin), keto-groups (e.g., canthaxanthin), or both (e.g., astaxanthin) as functional groups. [Pg.258]

Recent studies with a crossed-beam apparatus not only show that the products shown above are the correct ones, but that both the linear and cyclic isomers, each of which is a detected interstellar molecule, are formed.47 Crossed-beam studies also show that other reactions between C atoms and unsaturated hydrocarbons proceed to form similar products 48... [Pg.12]

A fourth success concerns the high degree of unsaturation found in the observed list of molecules. Very few highly saturated molecules are detected, and those that are saturated tend to be found in highly localized sources known as hot cores, where they are probably formed via H-atom hydrogenation on grain surfaces.54 The reason that ion-molecule reactions do not produce more saturated polyatomic species is, as discussed above, the small number of reactions between hydrocarbon ions and H2 that can occur rapidly. [Pg.17]

Emission from dimols of singlet oxygen may be detected by photomultipliers used for measurement of chemiluminescence from hydrocarbon polymers with a maximum spectral sensitivity at 460 nm. The above scheme, however, requires the presence of at least one molecule of hydrogen peroxide in close vicinity to the two recombining peroxyl radicals and assumes a large heterogeneity of the oxidation process. [Pg.465]

The spray paint can was inverted and a small amount of product was dispensed into a 20 mL glass headspace vial. The vial was immediately sealed and was incubated at 80°C for approximately 30 min. After this isothermal hold, a 0.5-mL portion of the headspace was injected into the GC/MS system. The GC-MS total ion chromatogram of the paint solvent mixture headspace is shown in Figure 15. Numerous solvent peaks were detected and identified via mass spectral library searching. The retention times, approximate percentages, and tentative identifications are shown in Table 8 for the solvent peaks. These peak identifications are considered tentative, as they are based solely on the library search. The mass spectral library search is often unable to differentiate with a high degree of confidence between positional isomers of branched aliphatic hydrocarbons or cycloaliphatic hydrocarbons. Therefore, the peak identifications in Table 8 may not be correct in all cases as to the exact isomer present (e.g., 1,2,3-cyclohexane versus 1,2,4-cyclohexane). However, the class of compound (cyclic versus branched versus linear aliphatic) and the total number of carbon atoms in the molecule should be correct for the majority of peaks. [Pg.623]

The radioactive signals of radio-GC show the 1 -methanol derivates and its common derivates with non radioactive methyl iodide (Fig. lb). The nC-methanol derivates take part in new molecule formation with non-radioactive methyl iodide or/and its derivates on catalyst surface. The C-methyl iodide as a newly formed radioactive product was detected while the selectivity to hydrocarbons sharply decreased (Fig. 2b). [Pg.343]


See other pages where Molecule detection hydrocarbons is mentioned: [Pg.203]    [Pg.278]    [Pg.889]    [Pg.431]    [Pg.81]    [Pg.294]    [Pg.28]    [Pg.77]    [Pg.48]    [Pg.79]    [Pg.1256]    [Pg.1781]    [Pg.172]    [Pg.493]    [Pg.476]    [Pg.202]    [Pg.321]    [Pg.270]    [Pg.271]    [Pg.294]    [Pg.6]    [Pg.177]    [Pg.199]    [Pg.234]    [Pg.516]    [Pg.332]    [Pg.336]    [Pg.144]    [Pg.14]    [Pg.89]    [Pg.199]    [Pg.313]    [Pg.254]    [Pg.214]    [Pg.363]    [Pg.172]    [Pg.230]    [Pg.390]   
See also in sourсe #XX -- [ Pg.33 ]




SEARCH



Hydrocarbon molecules

Hydrocarbons detection

Hydrocarbons, hydrocarbon 2 molecules)

Molecule detection

© 2024 chempedia.info