Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecularly Imprinted Polymers MIPs

A type of SPE stationary phase, still in its experimental development phase, that is not often used in chromatography is the molecularly imprinted polymer. This approach is described here rather than in the general discussion of stationary phases. Useful reviews of the subject (Ensing 1999, 2001 Stevenson 1999 Owens 1999 Ramstrom 1997 Spegel 2002) cover developments of this technology as they apply to SPE and to other applications such as biosensors, highly selective chemical catalysis (analogous to enzymatic catalysis) etc. [Pg.130]

Their use in validated quantitative methods will have to wait for these problems to be addressed. [Pg.132]


The development of highly selective chemical sensors for complex matrixes of medical, environmental, and industrial interest has been the object of greate research efforts in the last years. Recently, the use of artificial materials - molecularly imprinted polymers (MIPs) - with high recognition properties has been proposed for designing biomimetic sensors, but only a few sensor applications of MIPs based on electrosynythesized conductive polymers (MIEPs) have been reported [1-3]. [Pg.322]

Recently, molecularly imprinted polymers (MIPs) have gained attention as new, selective sorbents for chromatography and SPE. The cavities in the polymer... [Pg.272]

Fig. 5-5. Schematic representation of the preparation procedure of molecular imprinted polymers (MIP). Fig. 5-5. Schematic representation of the preparation procedure of molecular imprinted polymers (MIP).
Molecularly imprinted polymers (MIPs) can be prepared according to a number of approaches that are different in the way the template is linked to the functional monomer and subsequently to the polymeric binding sites (Fig. 6-1). Thus, the template can be linked and subsequently recognized by virtually any combination of cleavable covalent bonds, metal ion co-ordination or noncovalent bonds. The first example of molecular imprinting of organic network polymers introduced by Wulff was based on a covalent attachment strategy i.e. covalent monomer-template, covalent polymer-template [12]. [Pg.153]

Advanced techniques like molecularly imprinted polymers (MIPs), infrared/near infrared spectroscopy (FT-IR/NIR), high resolution mass spectrometry, nuclear magnetic resonance (NMR), Raman spectroscopy, and biosensors will increasingly be applied for controlling food quality and safety. [Pg.314]

The most widely employed techniques for the extraction of water samples for triazine compounds include liquid-liquid extraction (LLE), solid-phase extraction (SPE), and liquid-solid extraction (LSE). Although most reports involving SPE are off-line procedures, there is increasing interest and subsequently increasing numbers of reports regarding on-line SPE, the goal of which is to improve overall productivity and safety. To a lesser extent, solid-phase microextraction (SPME), supercritical fluid extraction (SEE), semi-permeable membrane device (SPMD), and molecularly imprinted polymer (MIP) techniques have been reported. [Pg.416]

The scientists from Hong Kong reported83 on a sol-gel derived molecular imprinted polymers (MIPs) based luminescent sensing material that made use of a photoinduced electron transfer (PET) mechanism for a sensing of a non-fluorescent herbicide - 2,4-dichlorophenoxyacetic acid. A new organosilane, 3 - [N,V-bis(9-anthrylmethyl)amino]propyltriethoxysilane, was synthesized and use as the PET sensor monomer. The sensing MIPs material was fabricated by a conventional sol-gel process. [Pg.372]

Molecularly imprinted polymers (MIPs) are of growing interest for their potential biotechnological applications. Recently, the templating processes with living yeast cells were reported107 for the preparation of ordered and... [Pg.377]

Among the techniques listed in Section 1.2.1, the two most documented approaches in addition to SPE, LLE, and PPT are solid phase microextraction (SPME) and affinity capture of analytes based on molecularly imprinted polymers (MIPs). Recent developments in these areas are briefly discussed below. [Pg.53]

Synthetic Polymers and Molecular Imprinted Polymers (MIPs)... [Pg.476]

Molecular imprinted polymers MIPs exhibit predetermined enan-tioselectivity for a specific chiral molecnle, which is nsed as the chiral template dnring the imprinting process. Most MIPs are obtained by copolymerization from a mixture consisting of a fnnctional mono-nnsatn-rated (vinylic, acrylic, methacrylic) monomer, a di- or tri-nnsatnrated cross-linker (vinylic, acrylic, methacrylic), a chiral template (print molecnle) and a porogenic solvent to create a three-dimensional network. When removing the print molecnle, chiral cavities are released within the polymer network. The MIP will memorize the steric and functional binding featnres of the template molecnle. Therefore, inclusion of the enantiomers into the asymmetric cavities of this network can be assumed as... [Pg.477]

Recent trends in pesticide analysis in food aims for reduced sample pretreatments or simplified methodologies (as QuEChERS approaches), the use of online purification processes, the use of new adsorbents (such as molecular imprinted polymers (MIPs) and nanomaterials) for the extraction and clean-up processes, and focused on the development of large multiresidue methods, most of them based on LC-MS/ MS. In spite of the relevant role of LC-MS/MS, GC-MS-based methods still play an important role in pesticide analysis in food. Despite the development achieved in the immunochemical approaches, the need for multi-residue methods has supported the development and use of instrumental techniques. [Pg.23]

The application of biosensors for process monitoring has been dogged by problems with fouling, selectivity, degrading bioactivity and long-term stability. Recent developments in molecularly imprinted polymers (MIPs) show some promise as synthetic receptors and have been used for this purpose for assays and as HPLC stationary phases. Recent work has shown that MIPs show increased robustness, storage endurance and lower cost compared with biosensors, which... [Pg.262]

One direct approach to the separation of chiral compounds is called molecular imprint polymers (MIPs) that involves the formation of a three-dimensional cavity with the shape and electronic features that are complementary to the imprinted or target molecule. [Pg.508]

This chapter will introduce the field of sensors based on molecular imprinted polymers (MIPs). MIPs are highly cross-finked polymers that are formed with the presence of a template molecule (Haupt and Mosbach 2000 Wulff 2002). The removal of the template molecule from the polymer matrix creates a binding cavity that is complementary in size and shape to the template molecule and is fined with appropriately positioned recognition groups (Scheme 15.1). [Pg.395]

Molecularly imprinted polymer (MIP) films can be utilized in conjunction with CdSe PL changes to enhance the selectivity of the sensor. MIPs have been developed to mimic the selective binding of molecules to biological substrates, as in... [Pg.349]

Fig. 3 Application of the Doehlert experimental design to optimize a MIP for propranolol with respect to the type of cross-linker (EDMA or TRIM) and the degree of cross-linking, (a) Three-dimensional representation of response surfaces for the percentage of bound [3H]propanolol to the molecularly imprinted polymer (MIP) and the corresponding non-imprinted control polymer (NIP), (b) Contour plot of the function describing binding of [3H]propanolol to MIPs relative to the degree and the kind (bi or trifunctional) cross-linking. The values were corrected for non-specific binding to the non-imprinted control polymer. Adapted from [31] with kind permission from Springer Science + Business Media... Fig. 3 Application of the Doehlert experimental design to optimize a MIP for propranolol with respect to the type of cross-linker (EDMA or TRIM) and the degree of cross-linking, (a) Three-dimensional representation of response surfaces for the percentage of bound [3H]propanolol to the molecularly imprinted polymer (MIP) and the corresponding non-imprinted control polymer (NIP), (b) Contour plot of the function describing binding of [3H]propanolol to MIPs relative to the degree and the kind (bi or trifunctional) cross-linking. The values were corrected for non-specific binding to the non-imprinted control polymer. Adapted from [31] with kind permission from Springer Science + Business Media...
Molecularly imprinted polymers (MIPs) have been used in many different applications, such as affinity separation matrices [6, 7], antibody mimics in immunoassays [8-11], recognition elements in biosensors [12-16], selective... [Pg.84]


See other pages where Molecularly Imprinted Polymers MIPs is mentioned: [Pg.18]    [Pg.4]    [Pg.14]    [Pg.134]    [Pg.427]    [Pg.733]    [Pg.826]    [Pg.19]    [Pg.29]    [Pg.146]    [Pg.112]    [Pg.302]    [Pg.56]    [Pg.131]    [Pg.102]    [Pg.238]    [Pg.24]    [Pg.31]    [Pg.221]    [Pg.278]    [Pg.1]    [Pg.3]    [Pg.30]    [Pg.83]    [Pg.111]    [Pg.113]    [Pg.171]   
See also in sourсe #XX -- [ Pg.243 , Pg.334 , Pg.335 , Pg.336 , Pg.337 , Pg.338 , Pg.339 , Pg.340 ]




SEARCH



Imprinted polymers

Imprinted polymers, molecular

MIP

Molecular imprinted polymers (MIPs

Molecular imprinted polymers (MIPs

Molecularly imprinted polymer imprinting

Molecularly imprinted polymers

Polymer molecular imprinted polymers

Polymers molecular imprinting

© 2024 chempedia.info