Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular structure methods

Methods to Estimate p Solely from Molecular Structure Methods of this type are available with the GCM approaches. All methods presented in Section 7.3 allow temperature-dependent estimation of pv in the region specified. For certain homologous series, specific vapor pressure-structure-temperature relationships exist. For example, Woodman et al. [27] have reported the following relationship for a, w-dinitriles (3 < Nqh1 < 8) ... [Pg.82]

Describe the differences in molecular structure, methods of polymerization and general properties between low-density (LD) and high-density (HD) polyethylene. [Pg.210]

PAW is a recent addition to the all-electron electronic structure methods whose accuracy appears to be similar to that of the general potential LAPW approach. The implementation of the molecular dynamics fonnalism enables easy stmcture optimization in this method. [Pg.2214]

NAMD was implemented in an object-oriented fashion (Fig. 3). Patches, the encapsulated communication subsystem, the molecular structure, and various output methods were objects. Every patch owned specialized objects... [Pg.475]

A completely new method of determining siufaces arises from the enormous developments in electron microscopy. In contrast to the above-mentioned methods where the surfaces were calculated, molecular surfaces can be determined experimentally through new technologies such as electron cryomicroscopy [188]. Here, the molecular surface is limited by the resolution of the experimental instruments. Current methods can reach resolutions down to about 10 A, which allows the visualization of protein structures and secondary structure elements [189]. The advantage of this method is that it can be apphed to derive molecular structures of maaomolecules in the native state. [Pg.129]

The most well-known and at the same time the earliest computer model for a molecular structure representation is a wire frame model (Figure 2-123a). This model is also known under other names such as line model or Drciding model [199]. It shows the individual bonds and the angles formed between these bonds. The bonds of a molecule are represented by colored vector lines and the color is derived from the atom type definition. This simple method does not display atoms, but atom positions can be derived from the end and branching points of the wire frame model. In addition, the bond orders between two atoms can be expressed by the number of lines. [Pg.132]

A challenging task in material science as well as in pharmaceutical research is to custom tailor a compound s properties. George S. Hammond stated that the most fundamental and lasting objective of synthesis is not production of new compounds, but production of properties (Norris Award Lecture, 1968). The molecular structure of an organic or inorganic compound determines its properties. Nevertheless, methods for the direct prediction of a compound s properties based on its molecular structure are usually not available (Figure 8-1). Therefore, the establishment of Quantitative Structure-Property Relationships (QSPRs) and Quantitative Structure-Activity Relationships (QSARs) uses an indirect approach in order to tackle this problem. In the first step, numerical descriptors encoding information about the molecular structure are calculated for a set of compounds. Secondly, statistical and artificial neural network models are used to predict the property or activity of interest based on these descriptors or a suitable subset. [Pg.401]

The chirality code of a molecule is based on atomic properties and on the 3D structure. Examples of atomic properties arc partial atomic charges and polarizabilities, which are easily accessible by fast empirical methods contained in the PETRA package. Other atomic properties, calculated by other methods, can in principle be used. It is convenient, however, if the chosen atomic property discriminates as much as possible between non-equivalent atoms. 3D molecular structures are easily generated by the GORINA software package (see Section 2.13), but other sources of 3D structures can be used as well. [Pg.420]

Obviously, to model these effects simultaneously becomes a very complex task. Hence, most calculation methods treat the effects which are not directly related to the molecular structure as constant. As an important consequence, prediction models are valid only for the system under investigation. A model for the prediction of the acidity constant pfQ in aqueous solutions cannot be applied to the prediction of pKj values in DMSO solutions. Nevertheless, relationships between different systems might also be quantified. Here, Kamlet s concept of solvatochro-mism, which allows the prediction of solvent-dependent properties with respect to both solute and solvent [1], comes to mind. [Pg.488]

An extensive series of studies for the prediction of aqueous solubility has been reported in the literature, as summarized by Lipinski et al. [15] and jorgensen and Duffy [16]. These methods can be categorized into three types 1 correlation of solubility with experimentally determined physicochemical properties such as melting point and molecular volume 2) estimation of solubility by group contribution methods and 3) correlation of solubility with descriptors derived from the molecular structure by computational methods. The third approach has been proven to be particularly successful for the prediction of solubility because it does not need experimental descriptors and can therefore be applied to collections of virtual compounds also. [Pg.495]

D descriptors are simple and easy to imderstand, while the 3D descriptors contain more information. The descriptors of both methods were derived from the molecular structures. Thus the models that were developed here are suitable for in-sdico data screening and library design. [Pg.503]

To identify the main methods and tools available for the computer prediction of spectra from the molecular structure, and for automatic structure elucidation from spectral data... [Pg.515]

The investigation of molecular structures and of their properties is one of the most fascinating topics in chemistry. Chemistry has a language of its own for molecular structures which has been developed from the first alchemy experiments to modem times. With the improvement of computational methods for chemical information processing, several descriptors for the handling of molecular information have been developed and used in a wide range of applications. [Pg.515]

A hands-on experience with the method is possible via the SPINUS web service [48. This service uses a client-server model. The user can draw a molecular structure within the web browser workspace (the client), and send it to a server where the predictions are computed by neural networks. The results are then sent back to the user in a few seconds and visualised with the same web browser. Several operations and different types of technology arc involved in the system ... [Pg.528]

A proper representation of the molecular structure is crucial for the prediction of spectra. Fragment-based methods, topological descriptors, physicochemical descriptors, and 3D descriptors have been used for this endeavor. [Pg.537]

Tbis tecbnic ne is available only for the MM-i- force field. As is true for the conjugate gradient methods, yon should noi use this algorithm when the initial interatomic forces are very large (meaning, the molecular structure is far from a inmiimim). [Pg.60]

Judson R S, E P Jaeger and A M Treasurywala 1994. A Genetic Algorithm-Based Method for Dockin Flexible Molecules. Journal of Molecular Structure Theochem 114 191-206. [Pg.739]

The simplest molecular orbital method to use, and the one involving the most drastic approximations and assumptions, is the Huckel method. One str ength of the Huckel method is that it provides a semiquantitative theoretical treatment of ground-state energies, bond orders, electron densities, and free valences that appeals to the pictorial sense of molecular structure and reactive affinity that most chemists use in their everyday work. Although one rarely sees Huckel calculations in the resear ch literature anymore, they introduce the reader to many of the concepts and much of the nomenclature used in more rigorous molecular orbital calculations. [Pg.172]

Molecular mechanics methods are not generally applicable to structures very far from equilibrium, such as transition structures. Calculations that use algebraic expressions to describe the reaction path and transition structure are usually semiclassical algorithms. These calculations use an energy expression fitted to an ah initio potential energy surface for that exact reaction, rather than using the same parameters for every molecule. Semiclassical calculations are discussed further in Chapter 19. [Pg.53]

R. A. Albright, Orbital Interactions in Chemistry John Wiley Sons, New York (1998). A. R. Leach, Molecular Modelling Principles and Applications Longman, Essex (1996). J. B. Foresman, JE. Frisch, Exploring Chemistry with Electronic Structure Methods Gaussian, Pittsburgh (1996). [Pg.105]

Traditionally, molecular mechanics has not been the method of choice for predicting transition structures. However, since it is the only method viable for many large molecules, some elforts have been made to predict transition structures. Since the bonds are explicitly defined in molecular mechanics methods, it is not possible to simply find a point that is an energy maximum, except for conformational intermediates. [Pg.148]

The technique most often used (i.e., for an atom transfer) is to hrst plot the energy curve due to stretching a bond that is to be broken (without the new bond present) and then plot the energy curve due to stretching a bond that is to be formed (without the old bond present). The transition structure is next dehned as the point at which these two curves cross. Since most molecular mechanics methods were not designed to describe bond breaking and other reaction mechanisms, these methods are most reliable when a class of reactions has been tested against experimental data to determine its applicability and perhaps a suitable correction factor. [Pg.149]

The simplest empirical calculations use a group additivity method. These calculations can be performed very quickly on small desktop computers. They are most accurate for a small organic molecule with common functional groups. The prediction is only as good as the aspects of molecular structure being par-... [Pg.253]

Ah initio calculations of polymer properties are either simulations of oligomers or band-structure calculations. Properties often computed with ah initio methods are conformational energies, polarizability, hyperpolarizability, optical properties, dielectric properties, and charge distributions. Ah initio calculations are also used as a spot check to verify the accuracy of molecular mechanics methods for the polymer of interest. Such calculations are used to parameterize molecular mechanics force fields when existing methods are insulficient, which does not happen too often. [Pg.310]

Material properties can be further classified into fundamental properties and derived properties. Fundamental properties are a direct consequence of the molecular structure, such as van der Waals volume, cohesive energy, and heat capacity. Derived properties are not readily identified with a certain aspect of molecular structure. Glass transition temperature, density, solubility, and bulk modulus would be considered derived properties. The way in which fundamental properties are obtained from a simulation is often readily apparent. The way in which derived properties are computed is often an empirically determined combination of fundamental properties. Such empirical methods can give more erratic results, reliable for one class of compounds but not for another. [Pg.311]

When a molecular orbital method was used to calculate the charge distribution in cyclohexadienyl cation it gave the results indicated How does the charge at each carbon compare with that deduced by examining the res onance structures for cyclohexadienyl cation ... [Pg.475]


See other pages where Molecular structure methods is mentioned: [Pg.14]    [Pg.14]    [Pg.67]    [Pg.2341]    [Pg.222]    [Pg.163]    [Pg.434]    [Pg.124]    [Pg.359]    [Pg.376]    [Pg.535]    [Pg.266]    [Pg.501]    [Pg.506]    [Pg.711]    [Pg.108]    [Pg.180]    [Pg.247]    [Pg.273]    [Pg.307]    [Pg.336]    [Pg.5]    [Pg.111]    [Pg.112]   
See also in sourсe #XX -- [ Pg.46 ]




SEARCH



Analytical methods techniques, molecular structural

Force-field methods, calculation of molecular structure and energy

MOLECULAR STRUCTURES BY COMPUTATIONAL METHODS

Molecular Structures of Phosphazenes Determined by -Ray Diffraction Methods

Molecular structure and energy, calculation of, by force-field methods

Molecular structure design Monte-Carlo methods

Molecular structure valence bond method

Prediction Methods Based on 3-D Molecular Structure

Representation molecular structure methods

Structural methods

Structure analysis methods molecular correlation time

Structure-activity methods molecular modification

© 2024 chempedia.info