Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular mass defined

Controlling the type and number of monomer insertion mistakes leads to controlling the crystallinity and the melting point of PP, which, together with its molecular mass, define its physical and mechanical properties. [Pg.1051]

In this case, the computation of the instantaneous weight-average molecular mass, defined as the instantaneous weight-average of chains added during an interval from /to f+df. [Pg.248]

The selectivity of a gel, defined by the incremental increase in distribution coefficient for an incremental decrease in solute size, is related to the width of the pore size distribution of the gel. A narrow pore size distribution will typically have a separation range of one decade in solute size, which corresponds to roughly three decades in protein molecular mass (Hagel, 1988). However, the largest selectivity obtainable is the one where the solute of interest is either totally excluded (which is achieved when the solute size is of the same order as the pore size) or totally included (as for a very small solute) and the impurities differ more than a decade in size from the target solute. In this case, a gel of suitable pore size may be found and the separation carried out as a desalting step. This is very favorable from an operational point of view (see later). [Pg.67]

Discussion. For oils and fats, which are esters of long-chain fatty acids, the saponification value (or number) is defined as the number of milligrams of potassium hydroxide which will neutralise the free fatty acids obtained from the hydrolysis of 1 g of the oil or fat. This means that the saponification number is inversely proportional to the relative molecular masses of the fatty acids obtained from the esters. A typical reaction from the hydrolysis of a glyceride is ... [Pg.308]

Throughout the main text of this book standard solutions and quantities have all been expressed in terms of molarities, moles and relative molecular masses. However, there are still many chemists who have traditionally used what are known as normal solutions and equivalents as the basis for calculations, especially in titrimetry. Because of this it has been considered desirable to include this appendix defining the terms used and illustrating how they are employed in the various types of determinations. [Pg.845]

The classical PTPs can be subdivided into receptorlike PTPs and nonreceptor, cytosolic PTPs. The second category of PTPs are broadly defined as dual specificity phosphatases (DSPs), which dephosphorylate pSer/ pThr as well as pTyr. MAP kinase phosphatases (MKPs) ( MAP kinase cascades) and PTEN are examples of DSP family members. Remarkably, PTEN also has lipid phosphatase activity that is specific for phosphatidylinositol-3,4,5-trisphosphate generated in response to the actions of PI3K. Finally, the class of low molecular mass (LM-) PTPs and that of CDC25 PTPs accomplish the cells repertoire of PTPs (Fig. 3). [Pg.1014]

It should be stressed that the observed critical strain-rate for bond fracture (sf) in the case of a polydisperse fraction refers to the longest chain present in the sample. This quantity is significantly different from the critical strain-rate (r ) defined with respect to an average molecular mass whose value could be determined only after careful consideration of the degradation kinetics. [Pg.142]

Enzymes that catalyze redox reactions are usually large molecules (molecular mass typically in the range 30-300 kDa), and the effects of the protein environment distant from the active site are not always well understood. However, the structures and reactions occurring at their active sites can be characterized by a combination of spectroscopic methods. X-ray crystallography, transient and steady-state solution kinetics, and electrochemistry. Catalytic states of enzyme active sites are usually better defined than active sites on metal surfaces. [Pg.594]

Properly functionalised additives can react with polymer substrates to produce polymer-bound functions which are capable of effecting the desired modification in polymer properties, hence the use of the term reactive modifiers. As an integral part of the polymer backbone, reactive modifiers are useful vehicles for incorporating the desired chemical functions to suit the specialised application. Being molecularly dispersed, the problem of solubility expressed under 2 above is avoided. Implicitly, the bound-nature of the function is not subjected to the normal problems of the loss of additives from the surface which are common with both high and low molecular mass additives. The bound nature of the function must be fully defined for the conditions of service. [Pg.411]

Figure 1.2. A number molecular mass distribution N (M) of an ideal chain polymer. N (M) is defined for integer multiples of Mm, the monomer mass. The integer factor, P, is called the degree of polymerization... [Pg.22]

Size-exclusion HPLC (SE-HPLC) separates proteins on the basis of size and shape. As most soluble proteins are globular (i.e. roughly spherical in shape), separation is essentially achieved on the basis of molecular mass in most instances. Commonly used SE-HPLC stationary phases include silica-based supports and cross-linked agarose of defined pore size. Size-exclusion systems are most often used to analyse product for the presence of dimers or higher molecular mass aggregates of itself, as well as proteolysed product variants. [Pg.184]

Unknown 1. Try to identify a compound with the spectrum represented in Fig. 5.1. The exact molecular mass of the compound is 60.0211 Da, which defines its elemental composition as C2H4O2. At this stage pay attention only to the most abundant peaks in the spectrum m/z 60 (molecular ion) and primary fragment ions of m/z 45, m/z 43, m/z 28, and m/z 15. Use the masses of elements from the periodic table of chemical elements. [Pg.120]

There are certain rules determining fragmentation of organic compounds in a mass spectrometer. That is why on the basis of the fragmentation pattern it is possible to define the molecular mass, elemental composition, presence of certain functional groups, and often the structure of an analyte. There are a lot of similarities in the mass spectrometric behavior of related compounds. This fact facilitates manual interpretation of a mass spectrum, although it requires some experience. It is also worth mentioning that mass... [Pg.120]

The beams of reactant molecules A and B intersect in a small scattering volume V. The product molecule C is collected in the detector. The detector can be rotated around the scattering centre. Various devices may be inserted in the beam path, i.e. between reactants and scattering volume and between scattering volume and product species to measure velocity or other properties. The angular distribution of the scattered product can be measured by rotating the detector in the plane defined by two molecular beams. The mass spectrophotometer can also be set to measure a specific molecular mass so that the individual product molecules are detected. [Pg.241]


See other pages where Molecular mass defined is mentioned: [Pg.130]    [Pg.801]    [Pg.16]    [Pg.120]    [Pg.52]    [Pg.130]    [Pg.801]    [Pg.16]    [Pg.120]    [Pg.52]    [Pg.68]    [Pg.283]    [Pg.597]    [Pg.148]    [Pg.186]    [Pg.8]    [Pg.138]    [Pg.345]    [Pg.352]    [Pg.231]    [Pg.378]    [Pg.259]    [Pg.744]    [Pg.625]    [Pg.258]    [Pg.30]    [Pg.15]    [Pg.17]    [Pg.22]    [Pg.63]    [Pg.566]    [Pg.209]    [Pg.227]    [Pg.196]    [Pg.193]    [Pg.694]    [Pg.343]    [Pg.87]    [Pg.44]    [Pg.257]    [Pg.88]   
See also in sourсe #XX -- [ Pg.116 , Pg.416 ]

See also in sourсe #XX -- [ Pg.59 ]




SEARCH



Mass defined

Molecular mass

© 2024 chempedia.info