Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular dynamics/quantum chemical studie

Besides these generalities, little is known about proton transfer towards an electrode surface. Based on classical molecular dynamics, it has been suggested that the ratedetermining step is the orientation of the HsO with one proton towards the surface [Pecina and Schmickler, 1998] this would be in line with proton transport in bulk water, where the proton transfer itself occurs without a barrier, once the participating molecules have a suitable orientation. This is also supported by a recent quantum chemical study of hydrogen evolution on a Pt(lll) surface [Skulason et al., 2007], in which the barrier for proton transfer to the surface was found to be lower than 0.15 eV. This extensive study used a highly idealized model for the solution—a bilayer of water with a few protons added—and it is not clear how this simplification affects the result. However, a fully quantum chemical model must necessarily limit the number of particles, and this study is probably among the best that one can do at present. [Pg.42]

I. Bako, T. Radnai, and M. C. Bellissent Funel, Investigation of structure of liquid 2,2,2 trifluoroethanol Neutron diffraction, molecular dynamics, and ab initio quantum chemical study. J. Chem. Phys. 121, 12472 12480 (2004). [Pg.56]

The vast majority of quantum chemical studies focus on equilibrium properties. However, a detailed understanding of chemical reactions requires a description of their chemical dynamics, which in turn requires information about the change in potential energy as bonds are broken or formed. Even though modem electronic structure theory can provide near-spectroscopic accuracy for small molecular systems near their equilibrium geometries, the general description of potential energy surfaces away from equilibrium remains very much a frontier area of research. [Pg.75]

The inclusion of relativistic effects is essential in quantum chemical studies of molecules containing heavy elements. A full relativistic calculation, i.e. based upon Quantum Electro Dynamics, is only feasible for the smallest systems. In the SCF approximation it involves the solution of the Dirac Fock equation. Due to the four component complex wave functions and the large number of basis functions needed to describe the small component Dirac spinors, these computations are much more demanding than the corresponding non-relativistic ones. This limits Dirac Fock calculations, which can be performed using e.g. the MOLFDIR package [1], to small molecular systems, UFe being a typical example, see e.g. [2]. [Pg.251]

What is next Several examples were given of modem experimental electrochemical techniques used to characterize electrode-electrolyte interactions. However, we did not mention theoretical methods used for the same purpose. Computer simulations of the dynamic processes occurring in the double layer are found abundantly in the literature of electrochemistry. Examples of topics explored in this area are investigation of lateral adsorbate-adsorbate interactions by the formulation of lattice-gas models and their solution by analytical and numerical techniques (Monte Carlo simulations) [Fig. 6.107(a)] determination of potential-energy curves for metal-ion and lateral-lateral interaction by quantum-chemical studies [Fig. 6.107(b)] and calculation of the electrostatic field and potential drop across an electric double layer by molecular dynamic simulations [Fig. 6.107(c)]. [Pg.248]

Diaz, N., Suarez, D., and Merz, K.M., Jr. (2001) Molecular dynamics simulation of the mononuclear zinc-P-lactomase from Bacciluscereus complexed with benzylpenicillin and quantum chemical study of the reaction mechanism, /. Am. Chem. Soc. 123, 9867-9879. [Pg.196]

Whereas selective diffusion can be better investigated using classical dynamic or Monte Carlo simulations, or experimental techniques, quantum chemical calculations are required to analyze molecular reactivity. Quantum chemical dynamic simulations provide with information with a too limited time scale range (of the order of several himdreds of ps) to be of use in diffusion studies which require time scale of the order of ns to s. However, they constitute good tools to study the behavior of reactants and products adsorbed in the proximity of the active site, prior to the reaction. Concerning reaction pathways analysis, static quantum chemistry calculations with molecular cluster models, allowing estimates of transition states geometries and properties, have been used for years. The application to solids is more recent. [Pg.3]

So far, our discussion has focussed on stationary quantum chemical methods, which yield results for fixed atomic nuclei, i.e. for frozen molecular structures like minimum structures on the Born-Oppenheimer potential energy surface. Processes in supramolecular assemblies usually feature prominent dynamical effects, which can only be captured through explicit molecular dynamics or Monte Carlo simulations [95-98]. Molecular dynamics simulations proved to be a useful tool for studying the detailed microscopic dynamic behavior of many-particle systems as present in physics, chemistry and biology. The aim of molecular dynamics is to study a system by recreating it on the computer as close to nature as possible, i.e. by simulating the dynamics of a system in all microscopic detail over a physical length of time relevant to properties of interest. [Pg.433]

The process of adsorption and interaction of probe molecules such as ammonia, carbon monoxide as well as the whole spectrum of organic reactant molecules with zeolite catalysts has been the subject of numerous experimental and computational studies. These interaction processes are studied using several computational methods involving force fields (Monte Carlo, molecular dynamics emd energy minimization) or quantum chemical methods. Another paper [1] discusses the application of force field methods for studying several problems in zeolite chemistry. Theoretical quantum chemical studies on cluster models of zeolites help us to understand the electronic and catalytic properties of zeolite catalysts. Here we present a brief summary of the application of quantum chemical methods to understand the structure and reactivity of zeolites. [Pg.321]

Molecular dynamics is the study of basic principles of chemical change. Its underlying theory is either classical or quantum mechanics. Much of the original insight into molecular encounters stemmed from a classical picture where the atoms were imagined to be positioned in three-dimensional coordinate space. This picture is in conflict with the quantum mechanical viewpoint that particles do not possess a definite position. A true quantum image of the particle is now understood as a blurred object able to interfere with itself. [Pg.185]

Proper inclusion of the solvent into the calculations is unfortunately quite difficult [46]. One can use classical molecular dynamics or Monte Carlo simulations, classical continuum models based on the Poisson-Boltzman equation, and quantum-chemical studies using various variants of the Self Consistent Reaction Field (SCRF) approach at the semiempirical or ab initio level. There are serious approximations associated with these methods. Continuous models neglect the specific solute-solvent interactions which are very important for polar solvent. Classical methods neglect the changes in the electronic structure of the solute due to the solvent effects. These uncertainties can be illustrated using the predicted solvation energy of adenine treated by various modem approaches. The calculated values vary from -8 to -20 kcal/mol [68]. [Pg.106]

Chemical studies usually deal with a solute which can be a single molecule or a molecular complex or transition state in a chemical reaction. In such systems, the role of the solvent is mainly a physical perturbation which can be simulated at a lower theoretical level than that required for the study of the subsystem of chemical interest. The success of continuum models confirms this statement. In order to describe the solution at the molecular level and to perform full statistical mechanics computations on a model of macroscopic sample, one may set up some computationally efficient approaches by limiting the quantum chemical study to the solute and using one of the usual classical force-fields to represent the solvent molecules. The computation of the statistical averages can be done by means of either Monte Carlo or molecular dynamics algorithms. The so-called QM/MM models are now widely used in such chemical studies. [Pg.566]

For some examples see (a) Bako, I. Radnai, T Belisant Funel, M. C. Investigation of structure of liquid 2,2,2-trifluoroethanol neutron diffraction, molecular dynamics, and ab initio quantum chemical study, J. Chem. Phys. 2004, 121, 12472-12480 (b) Cabaco, I. Danten, Y. Besnard, M. Guissani, Y. Guillot, B. Neutron diffraction and molecular dynamics study of liquid benzene and its fluorinated derivatives as a function of temperature, J. Phys. Chem. 1997, BlOl, 6977-6987. This last paper has a clear description of the derivation of pair correlation functions from experimental scattered intensities from liquids. [Pg.251]

The Car-Parrinello quantum molecular dynamics technique, introduced by Car and Parrinello in 1985 [1], has been applied to a variety of problems, mainly in physics. The apparent efficiency of the technique, and the fact that it combines a description at the quantum mechanical level with explicit molecular dynamics, suggests that this technique might be ideally suited to study chemical reactions. The bond breaking and formation phenomena characteristic of chemical reactions require a quantum mechanical description, and these phenomena inherently involve molecular dynamics. In 1994 it was shown for the first time that this technique may indeed be applied efficiently to the study of, in that particular application catalytic, chemical reactions [2]. We will discuss the results from this and related studies we have performed. [Pg.433]

Fig. 7.12 Experimental and calculated infrared spectra for liquid water. The black dots are the experimental values. The thick curve is the classical profile produced by the molecular dynamics simulation. The thin curve is obtained by applying quantum corrections. (Figure redrawn from Guilbt B 1991. A Molecular Dynamics Study of the Infrared Spectrum of Water. Journal of Chemical Physics 95 1543-1551.)... Fig. 7.12 Experimental and calculated infrared spectra for liquid water. The black dots are the experimental values. The thick curve is the classical profile produced by the molecular dynamics simulation. The thin curve is obtained by applying quantum corrections. (Figure redrawn from Guilbt B 1991. A Molecular Dynamics Study of the Infrared Spectrum of Water. Journal of Chemical Physics 95 1543-1551.)...
The first reaction filmed by X-rays was the recombination of photodisso-ciated iodine in a CCI4 solution [18, 19, 49]. As this reaction is considered a prototype chemical reaction, a considerable effort was made to study it. Experimental techniques such as linear [50-52] and nonlinear [53-55] spectroscopy were used, as well as theoretical methods such as quantum chemistry [56] and molecular dynamics simulation [57]. A fair understanding of the dissociation and recombination dynamics resulted. However, a fascinating challenge remained to film atomic motions during the reaction. This was done in the following way. [Pg.274]

All the macroscopic properties of polymers depend on a number of different factors prominent among them are the chemical structures as well as the arrangement of the macromolecules in a dense packing [1-6]. The relationships between the microscopic details and the macroscopic properties are the topics of interest here. In principle, computer simulation is a universal tool for deriving the macroscopic properties of materials from the microscopic input [7-14]. Starting from the chemical structure, quantum mechanical methods and spectroscopic information yield effective potentials that are used in Monte Carlo (MC) and molecular dynamics (MD) simulations in order to study the structure and dynamics of these materials on the relevant length scales and time scales, and to characterize the resulting thermal and mechanical proper-... [Pg.46]


See other pages where Molecular dynamics/quantum chemical studie is mentioned: [Pg.278]    [Pg.278]    [Pg.312]    [Pg.103]    [Pg.116]    [Pg.251]    [Pg.287]    [Pg.373]    [Pg.658]    [Pg.312]    [Pg.415]    [Pg.430]    [Pg.106]    [Pg.192]    [Pg.149]    [Pg.106]    [Pg.196]    [Pg.843]    [Pg.2115]    [Pg.4]    [Pg.434]    [Pg.18]    [Pg.515]    [Pg.640]    [Pg.3]    [Pg.253]    [Pg.8]    [Pg.80]    [Pg.86]    [Pg.93]    [Pg.535]    [Pg.536]    [Pg.277]   
See also in sourсe #XX -- [ Pg.278 ]




SEARCH



Chemical dynamics

Chemicals studied

Dynamics studies

Molecular studies

Quantum chemical

Quantum chemical dynamics

Quantum chemical molecular dynamics

Quantum dynamical

Quantum dynamics

Quantum molecular

Quantum molecular dynamics

Quantum studies

Studying dynamics

© 2024 chempedia.info