Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molar mass concept

Ideally, the sample should be injected onto the column as an infinitely thin disc, which covers the total cross section of the column. Because this is impossible, PSS has injected finite volumes onto the columns. In theory, these injection volumes should be as low as possible. In order to be able to detect the sample with significance, a certain (high) concentration of the sample has to be injected. This concept works well for low molar mass compounds, which do not generate much sample viscosity. However, when working with samples... [Pg.282]

M molar mass), where I and III are the tricritical or -regions. Here, the chain molecules exhibit an unperturbed random coil confirmation. In contrast, I and II are the critical or good solvent regimes, which are characterized by structural fluctuations in direction of an expanded coil conformation. According to the underlying concept of critical phenomena, the phase boundaries have to be considered as a continuous crossover and not as discontinuous transitions. [Pg.75]

The most important concept when working stoichiometry problems such as this one is moles. We must have moles to proceed. The mole determination of iodine will involve the molar mass of iodine (2 x 126.9 g/mol), while the mole determination of fluorine will involve Avogadro s number (since we have number of fluorine molecules). We can find the moles of each as follows ... [Pg.42]

Acetaldehyde (ethanal), CH3CHO, is a polar molecule that has a boiling point of 20°C. Propane, on the other hand, is a non-polar molecule of similar size, number of electrons, and molar mass. The boiling point of propane, CH3CH2CH3, is —42°C. Use the concept of dipole-dipole forces to explain these property differences. [Pg.191]

The concept of entropy-enthalpy compensation resulting in the critical conditions of enthalpic interactions and the molar mass independent sample retention turned out useful also for the understanding several other coupled methods of polymer HPLC. It is accepted [195,196] that the polymer species tend to elute at the critical conditions also when either eluent strength or quality change within the HPLC system in the course of the HPLC experiment that is in the continuous and local gradient methods (Sections 16.5.3, 16.5.4, and 16.5.6). Irrespective of the problems and limitations of LC CC, its concept belongs to the important breakthroughs in polymer HPLC. [Pg.479]

The fact that both the mole and the mass of an element are based on carbon-12 enables us to relate mole and mass. A molar mass is defined as the mass in grams of one mole of a substance, and it can be obtained directly from an element s atomic mass. We can use the elements hydrogen and nitrogen to illustrate this concept. Periodic table entries for both elements are shown below. The whole number above the element is the atomic number and gives the number of protons in the nucleus. The number below the element s symbol is the molar mass (as well as the atomic mass) ... [Pg.57]

Chemists may distinguish between the molar masses of pure elements, molecular compounds, and ionic compounds by referring to them as the gram atomic mass, gram molecular mass, and gram formula mass, respectively. Don t be fooled The basic concept behind each term is the same molar mass. [Pg.103]

In this contribution, the experimental concept and a phenomenological description of signal generation in TDFRS will first be developed. Then, some experiments on simple liquids will be discussed. After the extension of the model to polydisperse solutes, TDFRS will be applied to polymer analysis, where the quantities of interest are diffusion coefficients, molar mass distributions and molar mass averages. In the last chapter of this article, it will be shown how pseudostochastic noise-like excitation patterns can be employed in TDFRS for the direct measurement of the linear response function and for the selective excitation of certain frequency ranges of interest by means of tailored pseudostochastic binary sequences. [Pg.6]

Results presented in Fig. 13.8 could have been interpreted as an effect of crosslink density on toughening. But this is an incorrect concept, because crosslink density can be increased by the use of a low-molar-mass aliphatic diepoxide. This would decrease the matrix Tg and increase its toughenabil-ity, in spite of the increase in crosslink density. But also, it may be stated that at the same Tg — T, other factors related to the chemical structure, such as sub-Tg relaxations, will play a role on toughening mechanisms. [Pg.411]

For molecules, the molar mass is equal to the sum of the masses of the component atoms. Most chemists use the terms molar mass and molecular weight interchangeably, even though mass and weight are not the same concept. So, for example, the molar mass of magnesium sulfate (MgS04) is ... [Pg.54]

This increases the risk of loss of product quality due to a decrease in the molar mass, thermal inhomogeneities and melting problems. The extruder and screw concepts need to be constantly optimized and adapted to avoid quality loss. [Pg.58]

The colligative properties, described in Section 3.4.1 to Section 3.4.3, have been used to determine the molar mass of unknown chemical compounds. Pharmaceutical scientists and pharmacists may apply this concept in the preparation of isotonic (meaning of equal tone) solution dosage forms. These solution dosage forms can be applied to sensitive and delicate organs such as the eye, nose, or ear or directly injected into the body (i.e., blood vessels, muscles, lesions, etc.). They should have, when administered, the same osmotic pressure as body fluids. Otherwise, transport of body fluids inside and outside the cell tissues will occur, causing discomfort and damage to the tissue. Osmolarity of body fluids is approximately 0.307 osmol/L or 307 mosmol/L. [Pg.166]

Draw a concept map to relate the following terms molar mass of an element, molar mass... [Pg.231]

Using a concept map, explain how to calculate the number of grams of C that can be obtained when a given mass of A reacts with a certain number of molecules of B. Assume that you know the molar mass of A and C. Include proper units. For simplicity, assume that A is limiting, but don t forget to show how to determine the limiting reactant. [Pg.273]

The structural complexity of synthetic polymers can be described using the concept of molecular heterogeneity (see Fig. 1) meaning the different aspects of molar mass distribution (MMD), distribution in chemical composition (CCD), functionality type distribution (FTD) and molecular architecture distribution (MAD). They can be superimposed one on another, i.e. bifunctional molecules can be linear or branched, linear molecules can be mono- or bifunctional, copolymers can be block or graft copolymers, etc. In order to characterize complex polymers it is necessary to know the molar mass distribution within each type of heterogeneity. [Pg.4]

When a molecule takes part in a reaction, it is properties at the molecular level which determine its chemical behaviour. Such intrinsic properties cannot be measured directly, however. What can be measured are macroscopic molecular properties which are likely to be manifestations of the intrinsic properties. It is therefore reasonable to assume that we can use macroscopic properties as probes on intrinsic properties. Through physical chemical models it is sometimes possible to relate macroscopic properties to intrinsic properties. For instance 13C NMR shifts can be used to estimate electron densities on different carbon atoms in a molecule. It is reasonable to expect that macroscopic observable properties which depend on the same intrinsic property will be more or less correlated to each other. It is also likely that observed properties which depend on different intrinsic properties will not be strongly correlated. A few examples illustrate this In a homologous series of compounds, the melting points and the boiling points are correlated. They depend on the strengths of intermolecular forces. To some extent such forces are due to van der Waals interactions, and hence, it is reasonable to assume a correlation also to the molar mass. Another example is furnished by the rather fuzzy concept nucleophilicity . What is usually meant by this term is the ability to donate electron density to an electron-deficient site. A number of measurable properties are related to this intrinsic property, e.g. refractive index, basicity as measured by pK, ionization potential, HOMO-LUMO energies, n — n ... [Pg.33]

Section 12.1 introduces the concept of pressure and describes a simple way of measuring gas pressures, as well as the customary units used for pressure. Section 12.2 discusses Boyle s law, which describes the effect of the pressure of a gas on its volume. Section 12.3 examines the effect of temperature on volume and introduces a new temperature scale that makes the effect easy to understand. Section 12.4 covers the combined gas law, which describes the effect of changes in both temperature and pressure on the volume of a gas. The ideal gas law, introduced in Section 12.5, describes how to calculate the number of moles in a sample of gas from its temperature, volume, and pressure. Dalton s law, presented in Section 12.6, enables the calculation of the pressure of an individual gas—for example, water vapor— in a mixture of gases. The number of moles present in any gas can be used in related calculations—for example, to obtain the molar mass of the gas (Section 12.7). Section 12.8 extends the concept of the number of moles of a gas to the stoichiometry of reactions in which at least one gas is involved. Section 12.9 enables us to calculate the volume of any gas in a chemical reaction from the volume of any other separate gas (not in a mixture of gases) in the reaction if their temperatures as well as their pressures are the same. Section 12.10 presents the kinetic molecular theory of gases, the accepted explanation of why gases behave as they do, which is based on the behavior of their individual molecules. [Pg.328]

You can memorize the equation involving gas density and molar mass, but it is better simply to remember the ideal gas equation, the definition of density, and the relationship between number of moles and molar mass. You can then derive this equation when you need it. This approach proves that you understand the concepts and means one less equation to memorize. [Pg.150]

In these graphs (Figs. 7 and 8), the quasi vertical part of the curve would correspond to annealing, the rest would be due to chemicrystallization. In this case, all the trajectories would converge towards an embrittlement point not very far from the intersection of both boundaries Uc and M c and the concept of a critical molar mass (scheme A) would apparently be valid. [Pg.169]


See other pages where Molar mass concept is mentioned: [Pg.191]    [Pg.191]    [Pg.1428]    [Pg.34]    [Pg.36]    [Pg.41]    [Pg.410]    [Pg.118]    [Pg.127]    [Pg.184]    [Pg.456]    [Pg.472]    [Pg.483]    [Pg.113]    [Pg.378]    [Pg.178]    [Pg.178]    [Pg.10]    [Pg.174]    [Pg.175]    [Pg.48]    [Pg.741]    [Pg.12]    [Pg.1251]    [Pg.31]    [Pg.145]    [Pg.151]    [Pg.79]    [Pg.210]    [Pg.744]    [Pg.745]   
See also in sourсe #XX -- [ Pg.37 , Pg.38 , Pg.39 ]




SEARCH



Mass, concept

Molar mass

Molarity molar masses

© 2024 chempedia.info