Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Modeling temperature programmed

Until now, in order to select a hydrocarbon adsorber with higher hydrocarbon trapping and conversion efficiency, experimental tests using vehicle and engine dynamometer has been employed. A model. Temperature Programmed Adsorption (TPA), was proposed by Kim, et al. [4-S] to save cost and time. The model has an advantage to analysis adsorption, desorption and conversion of hydrocarbons simultaneously. [Pg.539]

Results on the characterization of coke on catalysts used in MCP conversion can also be rationalized in terms of the metal-proton adduct model. Temperature-programmed oxidation of such catalysts displays two distinct peaks of CO2 formation, as is shown in Fig. 26. One peak is characteristic of coke combustion catalyzed by metal oxide, and the second peak, at... [Pg.191]

In a recent paper [11] this approach has been generalized to deal with reactions at surfaces, notably dissociation of molecules. A lattice gas model is employed for homonuclear molecules with both atoms and molecules present on the surface, also accounting for lateral interactions between all species. In a series of model calculations equilibrium properties, such as heats of adsorption, are discussed, and the role of dissociation disequilibrium on the time evolution of an adsorbate during temperature-programmed desorption is examined. This approach is adaptable to more complicated systems, provided the individual species remain in local equilibrium, allowing of course for dissociation and reaction disequilibria. [Pg.443]

This model system corresponds to the conditions under which flash desorption experiments are performed. The temperature programed desorption of Amenomyia and Cvetanovi6 is based on different model requirements as will be dealt with in Section IV.B. Therefore, the following treatment in the present section is pertinent only to the flash desorption conditions. [Pg.354]

The SCR catalyst is considerably more complex than, for example, the metal catalysts we discussed earlier. Also, it is very difficult to perform surface science studies on these oxide surfaces. The nature of the active sites in the SCR catalyst has been probed by temperature-programmed desorption of NO and NH3 and by in situ infrared studies. This has led to a set of kinetic parameters (Tab. 10.7) that can describe NO conversion and NH3 slip (Fig. 10.16). The model gives a good fit to the experimental data over a wide range, is based on the physical reality of the SCR catalyst and its interactions with the reacting gases and is, therefore, preferable to a simple power rate law in which catalysis happens in a black box . Nevertheless, several questions remain unanswered, such as what are the elementary steps and what do the active site looks like on the atomic scale ... [Pg.399]

Change the model and program to account for a linear temperature profile. [Pg.422]

Semperatuie proqcammlnq (computer simulation 55 optimization 53 preparative separations 211 programming rate 53 retention indices 178 theoretical models 54 Temperature programming LC 83 SFC 630... [Pg.518]

The lack of an exact mathematical model to describe temperature programmed separations makes computer simulation for... [Pg.551]

Figure 9.7 Temperature-programmed reaction (TPR) spectra for CO oxidation at a series of model catalysts prepared by the soft landing of mass-selected Aun and AunSr cluster ions on MgO(lOO) thin films which are vacancy free (typically 1 % of a monolayer), (a) MgO (b) Au3Sr (c) Au4 (d) Au8. Also shown is the chemical reactivity R of pure Aun and AunSr clusters with 1 < n < 9. (Reproduced from Ref. 21). Figure 9.7 Temperature-programmed reaction (TPR) spectra for CO oxidation at a series of model catalysts prepared by the soft landing of mass-selected Aun and AunSr cluster ions on MgO(lOO) thin films which are vacancy free (typically 1 % of a monolayer), (a) MgO (b) Au3Sr (c) Au4 (d) Au8. Also shown is the chemical reactivity R of pure Aun and AunSr clusters with 1 < n < 9. (Reproduced from Ref. 21).
Abstract A three-function catalyst model for hydrocarbon SCR of NOx is described, based on experimental evidence for each function, during temperature-programmed surface reactions (TPSR). [Pg.145]

Figure 9.15. Comparison of the total ammonia adsorption of coated and extruded V2O5/WO3—Ti02 catalysts. Catalyst volume = 7 cm3. Model gas for loading 10% 02, 5% H20, NH3 = 1000ppm, and balance N2. GHSV = 52000h 1. Model gas for temperature-programmed desorption (TPD) experiment 10% 02, 5% H20, NO = 1000 ppm, NH3 = 1000 ppm, and balance N2. NH3 desorbed is calculated as the sum of thermally desorbed NH3, directly measured at the catalyst outlet, and chemically desorbed NH3, measured by the reduction of the NO concentration due to the SCR reaction. Figure 9.15. Comparison of the total ammonia adsorption of coated and extruded V2O5/WO3—Ti02 catalysts. Catalyst volume = 7 cm3. Model gas for loading 10% 02, 5% H20, NH3 = 1000ppm, and balance N2. GHSV = 52000h 1. Model gas for temperature-programmed desorption (TPD) experiment 10% 02, 5% H20, NO = 1000 ppm, NH3 = 1000 ppm, and balance N2. NH3 desorbed is calculated as the sum of thermally desorbed NH3, directly measured at the catalyst outlet, and chemically desorbed NH3, measured by the reduction of the NO concentration due to the SCR reaction.
It has also been postulated using molecular modeling and proven experimentally using temperature-programmed techniques that promotion with boron inhibits detrimental carbon formation.71 Ab initio calculations indicate that boron... [Pg.71]

The aim of this work was to apply combined temperature-programmed reduction (TPR)/x-ray absorption fine-structure (XAFS) spectroscopy to provide clear evidence regarding the manner in which common promoters (e.g., Cu and alkali, like K) operate during the activation of iron-based Fischer-Tropsch synthesis catalysts. In addition, it was of interest to compare results obtained by EXAFS with earlier ones obtained by Mossbauer spectroscopy to shed light on the possible types of iron carbides formed. To that end, model spectra were generated based on the existing crystallography literature for four carbide compounds of... [Pg.120]

Pyrolysis-Gas Chromatography-Mass Spectrometry. In the experiments, about 2 mg of sample was pyrolyzed at 900°C in flowing helium using a Chemical Data System (CDS) Platinum Coil Pyrolysis Probe controlled by a CDS Model 122 Pyroprobe in normal mode. Products were separated on a 12 meter fused capillary column with a cross-linked poly (dimethylsilicone) stationary phase. The GC column was temperature programmed from -50 to 300°C. Individual compounds were identified with a Hewlett Packard (HP) Model 5995C low resolution quadruple GC/MS System. Data acquisition and reduction were performed on the HP 100 E-series computer running revision E RTE-6/VM software. [Pg.547]

The title Spectroscopy in Catalysis is attractively compact but not quite precise. The book also introduces microscopy, diffraction and temperature programmed reaction methods, as these are important tools in the characterization of catalysts. As to applications, I have limited myself to supported metals, oxides, sulfides and metal single crystals. Zeolites, as well as techniques such as nuclear magnetic resonance and electron spin resonance have been left out, mainly because the author has little personal experience with these subjects. Catalysis in the year 2000 would not be what it is without surface science. Hence, techniques that are applicable to study the surfaces of single crystals or metal foils used to model catalytic surfaces, have been included. [Pg.10]

Erba model 4160 (Erba Science (UK) Ltd, Swindon, Wilts) with a sub-ambient attachment was fitted with a 25m BP1 flexible silica capillary column (SGE Ltd, Milton Keynes, Bucks.). Following 10 minutes at 10°C the column oven was temperature programmed at 3°C min-1 up to 150°C. [Pg.314]

Figure 16 Simulated and experimental temperature-programmed desorption spectra for OlPt(lll). The solid lines are experimental spectra. The crosses indicate simulated spectra for a model of the lateral interactions with nearest and next-nearest pair interactions, and also a linear 3-particle interaction. The O2 is formed from two atoms at next-nearest-neighbor positions. The kinetic parameters are — 206.4 kj/mol, v = 2.5 x 10 s a = 0.773, cpxN — 19.9 kjjmol, tp NN = 5.5 kjjmol, and (punear = 6.1 kJImol. In each plot the curves from top to bottom are for initial oxygen coverage of 0.194, 0.164, 0.093, and 0.073 ML, respectively. The heating rate is 8 Kjs ... Figure 16 Simulated and experimental temperature-programmed desorption spectra for OlPt(lll). The solid lines are experimental spectra. The crosses indicate simulated spectra for a model of the lateral interactions with nearest and next-nearest pair interactions, and also a linear 3-particle interaction. The O2 is formed from two atoms at next-nearest-neighbor positions. The kinetic parameters are — 206.4 kj/mol, v = 2.5 x 10 s a = 0.773, cpxN — 19.9 kjjmol, tp NN = 5.5 kjjmol, and (punear = 6.1 kJImol. In each plot the curves from top to bottom are for initial oxygen coverage of 0.194, 0.164, 0.093, and 0.073 ML, respectively. The heating rate is 8 Kjs ...

See other pages where Modeling temperature programmed is mentioned: [Pg.114]    [Pg.114]    [Pg.441]    [Pg.322]    [Pg.205]    [Pg.262]    [Pg.458]    [Pg.97]    [Pg.99]    [Pg.33]    [Pg.516]    [Pg.551]    [Pg.340]    [Pg.338]    [Pg.59]    [Pg.174]    [Pg.202]    [Pg.271]    [Pg.170]    [Pg.197]    [Pg.49]    [Pg.268]    [Pg.78]    [Pg.134]    [Pg.93]    [Pg.100]    [Pg.120]   


SEARCH



Modeller program

Programming models

Temperature model

Temperature modelling

Temperature program

Temperature programmed

Temperature programming

© 2024 chempedia.info