Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mixture with condensation

On the Similarity Character of an Unsteady Rarefaction Wave In a Gas-Vapour Mixture with Condensation... [Pg.197]

The self-similar solution of an unsteady rarefaction wave in a gas-vapour mixture with condensation is investigated. If the onset of condensation occurs at the saturation point, the rarefaction wave is divided into two zones, separated by a uniform region. If condensation is delayed until a fixed critical saturation ratio Xc > 1 is reached, a condensation discontinuity of the expansion type is part of the solution. Numerical simulation, using a simple relaxation model, indicates that time has to proceed over more then two decades of characteristic times of condensation before the self-similar solution can be recognized. Experimental results on heterogeneous nucleation and condensation caused by an unsteady rarefaction wave in a mixture of water vapour, nitrogen gas and chromium-K)xide nuclei are presented. The results are fairly well described by the numerical rdaxation model. No plateau formation could be observed. [Pg.197]

In analyzing the self-similar solution of an unsteady rarefaction wave in a gas-vapour mixture with condensation, we will first discuss the situation where the onset of condensation occurs at a saturation ratio of unity. Then, the change in the state of the mixture is continuous. The solution is fully isentropic and follows from the characteristic form of the Euler equations, which for a left running wave is ... [Pg.200]

A separator is fed with a condensate/gas mixture. The condensate leaves the bottom of the separator, passes a flowmeter and is followed by a choke valve, after which the condensate is boiling. The flow can not be measured using the transit time method, due to the combination of short piping, the absence of a suitable injection point and the flow properties of the condensate, which is non-newtonian due to a high contents of wax particles The condensate can not be representatively sampled, as it boils upon depressuratioh... [Pg.1055]

Add 23 g. of powdered (or flake ) sodium hydroxide to a solution of 15 ml. (18 g.) of nitrobenzene in 120 ml. of methanol contained in a 250 ml. short-necked bolt-head flask. Fix a reflux water-condenser to the flask and boil the solution on a water-bath for 3 hours, shaking the product vigorously at intervals to ensure thorough mixing. Then fit a bent delivery-tube to the flask, and reverse the condenser for distillation, as in Fig. 59, p. 100, or Fig. 23(D), p. 45). Place the flask in the boiling water-bath (since methanol will not readily distil when heated on a water-bath) and distil off as much methanol as possible. Then pour the residual product with stirring into about 250 ml. of cold water wash out the flask with water, and then acidify the mixture with hydrochloric acid. The crude azoxybenzene separates as a heavy oil, which when thoroughly stirred soon solidifies, particularly if the mixture is cooled in ice-water. [Pg.212]

In a 500 ml. three-necked flask, equipped with a thermometer, a sealed Hershberg stirrer and a reflux condenser, place 32-5 g. of phosphoric oxide and add 115-5 g. (67-5 ml.) of 85 per cent, orthophosphoric acid (1). When the stirred mixture has cooled to room temperature, introduce 166 g. of potassium iodide and 22-5 g. of redistilled 1 4-butanediol (b.p. 228-230° or 133-135°/18 mm.). Heat the mixture with stirring at 100-120° for 4 hours. Cool the stirred mixture to room temperature and add 75 ml. of water and 125 ml. of ether. Separate the ethereal layer, decolourise it by shaking with 25 ml. of 10 per cent, sodium thiosulphate solution, wash with 100 ml. of cold, saturated sodium chloride solution, and dry with anhydrous magnesium sulphate. Remove the ether by flash distillation (Section 11,13 compare Fig. II, 13, 4) on a steam bath and distil the residue from a Claisen flask with fractionating side arm under diminished pressure. Collect the 1 4-diiodobutane at 110°/6 mm. the yield is 65 g. [Pg.284]

Into a 250 or 500 ml. round-bottomed flask provided with a reflux condenser place 46 g. (38 ml.) of A.R. formic acid (98/100 per cent.) and 37 g. (46 ml.) of n-butyl alcohol. Reflux for 24 hours. Wash the cold mixture with small volumes of saturated sodium chloride solution, then with saturated sodium bicarbonate solution in the presence of a httle... [Pg.384]

Place a mixture of 53 g. of A.R. lactic acid (85-88 per cent, acid), 75 g. (85-5 ml.) of commercial anhydrous isopropyl alcohol, 300 ml. of benzene and 20 g. of Zeo-Karb 225/H (1) in a 700 ml. bolt-head flask, equipped with an automatic water separator (e.g., a large modified Dean and Stark apparatus with a stopcock at the lower end, see Fig. Ill, 126, 1) carrying an efficient reflux condenser at its upper end, and a mercury-sealed stirrer (alternatively, the hquid-sealed stirrer shown in Fig. 11,7,11, c. may be used). Reflux the mixture, with stirring, on a steam bath for 5 hours or until water no longer collects in appreciable amount in the water separator run off the water from time to time. Filter off the resin at the pump and wash it with two 25 ml. portions of benzene. Shake the combined filtrate and washings with about 5 g. of precipit-ated calcium... [Pg.387]

Reflux a mixture of 1 g. of the ester, 3 ml. of benzylamine and 0 1 g. of powdered ammonium chloride for 1 hour in a Pyrex test-tube fltted with a short condenser. Wash the cold reaction mixture with water to remove the excess of benzylamine. If the product does not crystallise, stir it with a httle water containing a drop or two of dilute hydrochloric acid. If crystallisation does not result, some unchanged ester may be present ... [Pg.394]

Fit a 1500 ml. bolt-head flask with a reflux condenser and a thermometer. Place a solution of 125 g. of chloral hydrate in 225 ml. of warm water (50-60°) in the flask, add successively 77 g. of precipitated calcium carbonate, 1 ml. of amyl alcohol (to decrease the amount of frothing), and a solution of 5 g. of commercial sodium cyanide in 12 ml. of water. An exothermic reaction occurs. Heat the warm reaction mixture with a small flame so that it reaches 75° in about 10 minutes and then remove the flame. The temperature will continue to rise to 80-85° during 5-10 minutes and then falls at this point heat the mixture to boiling and reflux for 20 minutes. Cool the mixture in ice to 0-5°, acidify with 107-5 ml. of concentrated hydrochloric acid. Extract the acid with five 50 ml. portions of ether. Dry the combined ethereal extracts with 10 g. of anhydrous sodium or magnesium sulphate, remove the ether on a water bath, and distil the residue under reduced pressure using a Claiseii flask with fractionating side arm. Collect the dichloroacetic acid at 105-107°/26 mm. The yield is 85 g. [Pg.431]

Into a 500 nil. round-bottomed flask, provided with a double surface condenser, place 50 g. (63 ml.) of pure, dry acetone, 50 g. (47 ml.) of ethyl cyanoacetate (Section 111,131) and 0 -5 g. of piperidine. Allow to stand for 60 hours and heat on a water bath for 2 hours. Treat the cold reaction mixture with 100 ml. of ether, wash with dilute hydrochloric acid, then with water, and dry over anhydrous sodium or magnesium sulphate. Distil under diminished pressure and collect the ethyl fsopropylidene cyanoacetate (ethyl a-cyano-pp-dimethylacrylate) at 114-116°/14mm.(l). The yield is 39 g. [Pg.495]

Into a 500-ml. bolt head or three-necked fiask, provided with a mechanical stirrer and a reflux condenser, place 60 g. (69 ml.) of thiophene-free toluene (Section 11,47,16) and 60 g. (33 ml.) of concentrated sulphuric acid. Heat the mixture, with stirring, in an oil bath maintained at... [Pg.550]

Equip a 1 Utre three-necked flask or a 1 litre bolt- head flask with a reflux condenser and a mercury-sealed stirrer. Dissolve 50-5 g. of commercial 2 4-dinitro-l-chlorobenzene in 250 ml. of rectified spirit in the flask, add the hydrazine solution, and reflux the mixture with stirring for an hour. Most of the condensation product separates during the first 10 minutes. Cool, filter with suction, and wash with 50 ml. of warm (60°) rectified spirit to remove unchanged dinitrochlorobenzene, and then with 50 ml. of hot water. The resulting 2 4-dinitrophenylhydrazine (30 g.) melts at 191-192° (decomp.), and is pure enough for most purposes. Distil oflF half the alcohol from the filtrate and thus obtain a less pure second crop (about 12 g.) recrystallise this from n-butyl alcohol (30 ml. per gram). If pure 2 4-dinitrophenylhydrazine is required, recrystallise the total yield from n-butyl alcohol or from dioxan (10 ml. per gram) this melts at 200° (decomp.). [Pg.638]

In a 500 ml. flask, fitted with a reflux condenser, place 53 g. of 1-chloro-methylnaphthalene (Section IV.23), 84 g, of hexamethylenetetramine and 250 ml. of 1 1 acetic acid [CAUTION 1-Chloromethylnaphtha-lene and, to a lesser degree, a-naphthaldehyde have lachrymatory and vesicant properties adequate precautions should therefore be taken to avoid contact with these substances.] Heat the mixture under reflux for 2 hours it becomes homogeneous after about 15 minutes and then an oil commences to separate. Add 100 ml. of concentrated hydrochloric acid and reflux for a further 15 minutes this will hydrolyse any SchifiF s bases which may be formed from amine and aldehyde present and will also convert any amines into the ether-insoluble hydrochlorides. Cool, and extract the mixture with 150 ml. of ether. Wash the ether layer with three 50 ml. portions of water, then cautiously with 50 ml. of 10 per cent, sodium carbonate solution, followed by 50 ml. of water. Dry the ethereal solution with anhydrous magnesium sulphate, remove the ether by distillation on a steam bath, and distil the residue under reduced pressure. Collect the a-naphthaldehyde at 160-162718 mm. the yield is 38 g. [Pg.700]

Method 2. Place 0-2 g. of cupric acetate, 10 g. of ammonium nitrate, 21 2 g. of benzoin and 70 ml. of an 80 per cent, by volume acetic acid -water solution in a 250 ml. flask fitted with a reflux condenser. Heat the mixture with occasional shaking (1). When solution occurs, a vigorous evolution of nitrogen is observed. Reflux for 90 minutes, cool the solution, seed the solution with a crystal of benzil (2), and allow to stand for 1 hour. Filter at the pump and keep the mother liquor (3) wash well with water and dry (preferably in an oven at 60°). The resulting benzil has m.p. 94-95° and the m.p. is unaffected by recrystallisation from alcohol or from carbon tetrachloride (2 ml. per gram). Dilution of the mother liquor with the aqueous washings gives a further 1 Og. of benzil (4). [Pg.715]

Hydrolysis of methyl m-nitrobenzoate to m-nitrobenzoic acid. Place 90 -5 g. of methyl m-nitrobenzoate and a solution of 40 g. of sodium hydroxide in 160 ml. of water in a 1-htre round-bottomed flask equipped with a reflux condenser. Heat the mixture to boiling during 5-10 minutes or until the ester has disappeared. Dilute the reaction mixture with an equal volume of water. When cold pour the diluted reaction product, with vigorous stirring, into 125 ml. of concentrated hydrochloric acid. Allow to cool to room temperature, filter the crude acid at the pump and wash it with a httle water. Upon drying at 100°, the crude m-nitrobenzoic acid, which has a pale brownish colour, weighs 80 g. and melts at 140°, Recrystalhsation from 1 per cent, hydrochloric acid afibrds the pure acid, m.p. 141°, as a pale cream sohd the loss of material is about 5 per cent. [Pg.770]

Tricarballylic acid. Place 228 g. (204 ml.) of ethyl propane-1 1 2 3-tetracarboxylate and 240 ml. of 1 1 hydrochloric acid in a 1-litre threenecked flask, fitted with a mechanical stirrer and a fractionating column with condenser set for downward distillation attach a receiver with side tube to the condenser and connect the side tube to a wash bottle containing water. Boil the mixture, with continual stirring, at such a rate that the... [Pg.913]


See other pages where Mixture with condensation is mentioned: [Pg.2]    [Pg.2]    [Pg.253]    [Pg.305]    [Pg.419]    [Pg.465]    [Pg.495]    [Pg.525]    [Pg.526]    [Pg.527]    [Pg.540]    [Pg.573]    [Pg.604]    [Pg.640]    [Pg.698]    [Pg.701]    [Pg.701]    [Pg.703]    [Pg.764]    [Pg.768]    [Pg.769]    [Pg.775]    [Pg.827]    [Pg.830]    [Pg.834]    [Pg.835]    [Pg.842]    [Pg.844]    [Pg.845]    [Pg.847]    [Pg.863]    [Pg.865]    [Pg.866]    [Pg.888]    [Pg.922]   
See also in sourсe #XX -- [ Pg.472 ]




SEARCH



Mixtures condensation

© 2024 chempedia.info