Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mixing free-radical formation

Detection of Radical Anion by ESR Spectroscopy. The ESR measurements of the rate of free radical formation by electron transfer from fluorene to nitroaromatics were obtained by use of the flow system and U-type mixing cells described previously (18, 20). Concentrations were estimated by comparison of the total area of overmodulated first-derivative spectra with solutions of diphenylpicrylhydrazyl under identical solvent and instrumental conditions. Relative concentrations within a given experiment are considered accurate to within a few per cent, while absolute concentrations are considered to be accurate to 30%. [Pg.211]

Aliphatic sulfides can be efficient co-initiators for the photoinduced polymerization induced by benzophenone [185, 186]. An exceptionally strong effect was observed for 2,4,6-trimethyl-1,3,5-trithiane (TMT). A model reaction for free-radical formation during photoreduction of an initiator triplet state by a sulfide is the photoreduction of benzophenone by dimethyl sulfide [171, 187-189]. In this process it was established that electron transfer from the sulfur atom to the triplet state of the benzophenone is a primary photochemical step. In this step, radical ions are formed. The overall quantum yields of photoproducts (ketyl radicals and radical anions) are low (Ed) 0.26) in aqueous solution, in the range 0.16-0.20 in mixed water-acetonitrile solution and less then 0.01 in pure acetonitrile. These results suggest that, in organic solvents, back electron transfer within the radical-ion pair to regenerate the reactants is the dominant process. [Pg.3739]

Although UVA plays an essential role in the formation of vitamin D by the human skin, it is harmful as it causes sunburn and cataract formation in the eyes. As discussed below, UVA also causes toxic effects when mixed with xenobiotic chemicals. UVB causes damage at the molecular level. It is absorbed by DNA and alters its structure. UV excites organic molecules and generates free radicals that are responsible for substitution, elimination, and polymerization reactions free radical formation and generation of ROS. Exposures to both UVA and UVB concurrent with exposures to xenobiotic chemicals produce unanticipated toxic effects. Following are examples of the mixture effects of UV. [Pg.248]

There are numerous studies evaluating the possible role of tocopherols in preventing and/or treating cardiovascular disease, malignancies, diabetes mellitus, cataracts, immune function, and Alzheimer s Disease. In all of these conditions, there is evidence of free-radical formation or general oxidation mechanisms as part of the disease process. The evidence for taking supplements in addition to proper diet is mixed (36,37). [Pg.384]

Modes of Radioprotection - The major hypotheses of the modes of radioprotection, e.g., hypoxia, radical scavenging, and mixed disulfide formation, continue as the basis for much experimentation, but a very complex picture is emerging for the phenomenon of radioprotection. For the amino thiols, at least, free radical formation, oxygen, metal ions, energy transfer, and possibly mixed disulfide formation may all be Involved. Bacq, however, favors a "biochemical shock" mechanism for the amino thiols, in which fixing of the thiols to important macromolecules of the mitochondria liberates certain substances, possibly enzymes, which results in inhibition of carbohydrate utilization ... [Pg.334]

When an aqueous solution of a diazonium salt is added to an alkaline solution of a phenol, coupling occurs with formation of an azo-compound (p. 188). If ho vc cr the ntiueous solution of the diazonium salt, t. . ., />-bromohenzene diazonium chloride, is mixed with an excess of an aromatic hydrocarbon, and aqueous sodium hydroxide then added to the vigorously stirred mixture, the diazotate which is formed, e.g., BrC,H N OH, dissolves in the hydrocarbon and there undergoes decomposition with the formation of nitrogen and two free radicals. The aryl free radical then reacts with the hydrocarbon to give a... [Pg.201]

Hexachloroethane is metabolized by the mixed function oxidase system by way of a two-step reduction reaction involving cytochrome P-450 and either reduced nicotinamide adenine dinucleotide phosphate (NADPH) or cytochrome b5 as an electron donor. The first step of the reduction reaction results in the formation of the pentachloroethyl free radical. In the second step, tetrachloroethene is formed as the primary metabolite. Two chloride ions are released. Pentachloroethane is a minor metabolic product that is generated from the pentachloroethyl free radical. [Pg.72]

The standard gel-forming reaction is shown in Figure 8.2. Acrylamide and the cross-linker N, A-methylenebisacrylamide (bis) are mixed in aqueous solution and then copolymerized by means of a vinyl addition reaction initiated by free radicals.1317 Gel formation occurs as acrylamide monomer polymerizes into long chains cross-linked by bis molecules. The resultant interconnected meshwork of fiberlike structures has both solid and liquid components. It can be thought of as a mass of relatively rigid fibers that create a network of open spaces (the pores) all immersed in liquid (the buffer). The liquid in a gel maintains the gel s three-dimensional shape. Without the liquid, the gel would dry to a thin film. At the same time, the gel fibers retain the liquid and prevent it from flowing away. [Pg.117]

The mechanism of carbon tetrachloride hepatotoxicity generally is viewed as an example of lethal cleavage, where the CCh— Cl bond is split in the mixed-function oxidase system of the hepatocytes. After this cleavage damage may occur directly from the free radicals (-CCl and -Cl) and/or from the formation of toxic metabolites such as phosgene." ... [Pg.127]

Thermal decomposition in three different ways, i.e. homolytic, polar and radical induced decomposition, as well as intermolecular reaction of sulfonyl peroxides are the main reactions displayed by sulfonyl peroxides. When bis(arylsulfonyl) peroxides are allowed to decompose at 25-40 °C in chloroform, homolytic 0—0 bond fission followed by hydrogen abstraction from the solvent results in the formation of the corresponding arylsnlfonic acids. Mixed acyl sulfonyl peroxides undergo complicated thermal decomposition in solution, and have been used commercially as polymerization initiators, since they provide a source of free radicals at a relatively low temperature . [Pg.1005]

Deters (14) vibromilled a blend of cellulose and cellulose triacetate. The acetic acid content of cellulose acetate decreased with grinding time (40 h) while that of the cellulose increased, suggesting the formation of a block or graft copolymer or of an esterification reaction by acetic acid developed by mechanical reaction. Baramboim (/5) dissolved separately in CO polystyrene, poly(methyl methacrylate), and poly(vinyl acetate). After mixing equal volumes of solutions of equivalent polymer concentration, the solvent was evaporated at 50° C under vacuum and the resultant product ball-milled. The examination of the ball-milled products showed the formation of free radicals which copolymerized. [Pg.7]

Radical formation in a mixed crystal system of cytosine monohydrate doped with small amounts of thiocytosine (ca. 0.5%) was investigated on order to gain insight into hole transfer in a well-defined crystalline system.31 Also of interest was whether the protonation state of the thiocytosine radical(s) was the same as that of the cystosine radical(s). Crystals were X-irradiated (ca. 30 kGy) and ESR and ENDOR spectra recorded at ca. 15 K. After irradiation, many types of free radicals were formed. Among these, the low field resonance from a sulfur centered radical (42), with g-tensor (2.132, 2.004, 2.002), was clearly visible. Radical 42 constituted approximately 10% of the total cohort of radicals formed in the crystal and is apparently the only sulfur-centred radical observed in this experiment. Six weakly coupled protons were observed, two of which are shown... [Pg.255]

Photoinitiators are generally aryl alkyl ketones or diaryl ketones (Table 2.19). For aryl alkyl ketones two free radicals are produced by homolytic scission of a C-C bond (Eq. (2.96)). Diaryl ketones are usually mixed with a tertiary amine the mechanism of production of free radicals involves H abstraction from the tertiary amine by the excited state PI, via a charge-transfer stabilized exciplex (Eq. (2.97)). The a-amino alkyl radical formed is very reactive and is in fact the true initiator because the cetyl radical disappears rapidly through a coupling reaction (formation of pinacol). [Pg.63]


See other pages where Mixing free-radical formation is mentioned: [Pg.128]    [Pg.765]    [Pg.207]    [Pg.98]    [Pg.634]    [Pg.211]    [Pg.318]    [Pg.319]    [Pg.428]    [Pg.469]    [Pg.33]    [Pg.434]    [Pg.805]    [Pg.334]    [Pg.562]    [Pg.711]    [Pg.54]    [Pg.85]    [Pg.67]    [Pg.742]    [Pg.1467]    [Pg.742]    [Pg.806]    [Pg.26]    [Pg.130]    [Pg.209]    [Pg.120]    [Pg.67]    [Pg.398]    [Pg.34]    [Pg.437]    [Pg.213]    [Pg.75]    [Pg.112]    [Pg.258]   
See also in sourсe #XX -- [ Pg.31 , Pg.403 ]




SEARCH



Formate radicals

Free formation

Radical formation

© 2024 chempedia.info