Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Minerals isotopic composition

Nadeau S., Philippot P., and Pineau F. (1993) Fluid inclusion and mineral isotopic compositions (H-C-O) in eclogite rocks as tracers of local fluid migration during high pressure metamorphism. Earth Planet. Sci. Lett. 114, 431-448. [Pg.1579]

Major-element compositions of most lithospheric peridotites reflect an origin as melt-residues. However, as with parent-daughter isotope ratios, compilation of their strontium and neodymium mineral isotopic compositions reveals that very few samples show the characteristics of ancient melt residues (Figure 37). Osmium isotopes are the exception and dominantly reflect ancient extraction of high Re/Os melts, leaving rhenium-depleted residues to develop time inte-... [Pg.225]

Suggestions that phosphatic minerals in mammals could be used, however, revived the interest in climate reconstruction in continental interiors. Aquatic, cold-blooded animals like fish have body temperatures and body water oxygen isotopic compositions that are directly dependent on the water in which they live. For these animals, a commonly used equation describes the relationships among temperature, water oxygen isotopic composition and phosphate oxygen isotopic composition as (Longinelli and Nuti 1973 verified by Kolodny et al. 1983, among others) ... [Pg.119]

Figure 1.4]. Sulfur isotopic compositions of sulfide minerals from Kuroko deposits (Shikazono, 1987b). Figure 1.4]. Sulfur isotopic compositions of sulfide minerals from Kuroko deposits (Shikazono, 1987b).
Gamo (1995) revealed based on the chemical and isotopic compositions of hydrothermal fluids from midocean ridges that the precipitation of minerals and interaction... [Pg.66]

Origin of ore fluids is constrained by (1) chemical compositions of ore fluids estimated by thermochemical calculations (section 1.3.2) and by fluid inclusion analyses, (2) isotopic compositions of ore fluids estimated by the analyses of minerals and fluid inclusions (section 1.3.3), (3) seawater-rock interaction experiments, (4) computer calculations on the seawater-rock interaction, and (5) comparison of chemical features of Kuroko ore fluids with those of present-day hydrothermal solutions venting from seafloor (section 2.3). [Pg.77]

Isotopic compositions of minerals and fluid inclusions can be used to estimate those of Kuroko ore fluids. Estimated isotopic compositions of Kuroko ore fluids are given in Table 1.10. All these data indicate that the isotopic compositions lie between seawater value and igneous value. For instance, Sr/ Sr of ore fluids responsible for barite and anhydrite precipitations is 0.7069-0.7087, and 0.7082-0.7087, respectively which are between present-day. seawater value (0.7091) and igneous value (0.704-0.705). From these data, Shikazono et al. (1983), Farrell and Holland (1983) and Kusakabe and Chiba (1983) thought that barite and anhydrite precipitated by the mixing of hydrothermal solution with low Sr/ Sr and seawater with high Sr/ Sr. [Pg.80]

Figure 1.109. Sulfur isotopic compositions of Neogene Au-Ag vein-type and disseminated-type deposits. Sulfur isotopic compositions on the samples from the Yatani deposits (Sample No. YT26 from Zn-Pb vein S S = -)-3.3%o), and HS72050305-YT1, YT24 and NS-3 from Au-Ag vein (average S S = +3.3%c)) by Shikazono and Shimazaki (1985) are also plotted. Base-metal rich implies the sample containing abundant sulfide minerals but no Ag-Au minerals from base-metal rich deposits and also from Ginguro-type deposits (Shikazono, 1987b). Figure 1.109. Sulfur isotopic compositions of Neogene Au-Ag vein-type and disseminated-type deposits. Sulfur isotopic compositions on the samples from the Yatani deposits (Sample No. YT26 from Zn-Pb vein S S = -)-3.3%o), and HS72050305-YT1, YT24 and NS-3 from Au-Ag vein (average S S = +3.3%c)) by Shikazono and Shimazaki (1985) are also plotted. Base-metal rich implies the sample containing abundant sulfide minerals but no Ag-Au minerals from base-metal rich deposits and also from Ginguro-type deposits (Shikazono, 1987b).
This mechanism as a main cause for epithermal-type Au deposition is supported by sulfur isotopic data on sulfides. Shikazono and Shimazaki (1985) determined sulfur isotopic compositions of sulfide minerals from the Zn-Pb and Au-Ag veins of the Yatani deposits which occur in the Green tuff region. The values for Zn-Pb veins and Au-Ag veins are ca. +0.5%o to -f4.5%o and ca. -l-3%o to - -6%c, respectively (Fig. 1.126). This difference in of Zn-Pb veins and Au-Ag veins is difficult to explain by the equilibrium isotopic fractionation between aqueous reduced sulfur species and oxidized sulfur species at the site of ore deposition. The non-equilibrium rapid mixing of H2S-rich fluid (deep fluid) with SO -rich acid fluid (shallow fluid) is the most likely process for the cause of this difference (Fig. 1.127). This fluids mixing can also explain the higher oxidation state of Au-Ag ore fluid and lower oxidation state of Zn-Pb ore fluid. Deposition of gold occurs by this mechanism but not by oxidation of H2S-rich fluid. [Pg.175]

Kqjima, S. and Sugaki, A. (1989) Stable isotope compositions of some vein minerals from the Oe mine, southwestern Hokkaido, Japan. J. Mineralogists Petrologists Econ. Geol, 84, 362-313. [Pg.278]

Geological, mineralogical and geochemical features of these deposit types (distribution, age, associated volcanism, host and country rocks, fluid inclusions, opaque, gangue and hydrothermal alteration minerals, chemical features of ore fluids (temperature, salinity, pH, chemical composition, gaseous fugacity, isotopic compositions (O, D, S, Sr/ Sr, Pb), rare earth elements)) were summarized. [Pg.449]

Calcium carbonate is also the main constituent of the shells of sea animals, which make their shells from elements acquired from the surrounding waters. Now, the degree of fractionation of the oxygen isotopes as well as the formation of mineral carbonates and of animal shells in sea waters are determined on the basis of the temperature-dependent fractionation of the isotopes of oxygen the oxygen isotope composition of these materials reflects, therefore, the temperature at the time of their formation. Thus determining the isotope ratio between the stable isotopes of oxygen... [Pg.242]

The presence of 26Mg excesses correlated with Al/Mg ratios in fifteen Ca-Al-rich inclusions from the Allende and Leoville carbonaceous chrondrites has provided additional strong evidence for the in situ decay of 26A1 (see [9] for a recent review of isotopic anomalies). There are also, however, several examples of minerals whose isotopic compositions depart substantially from a unique Al-Mg isochron, even within a single inclusion [10,11]. Since deviations from the isochron may reflect either differences in the formation age of individual minerals or intrinsic heterogeneities in the initial 26A1/27A1 ratio, the value of the Al-Mg system as a chronometer for early solar system events remains unclear. [Pg.102]

All of the Type A and B inclusions studied are surrounded by a layered rim sequence of complex mineralogy [21] which clearly defines the inclusion-matrix boundary. Secondary alteration phases (grossular and nepheline, especially) are also a common feature of these inclusions, suggesting that vapor phase reactions with a relatively cool nebula occurred after formation of inclusions. Anorthite, in particular, is usually one of the most heavily altered phases the relationship between Mg isotopic composition and alteration is discussed below. (See [12] for striking cathodoluminesce photographs of typical Allende alteration mineralogy.) Inclusion Al 3510 does not fit the normal pattern as it has no Wark-rim and does not contain the usual array of secondary minerals. [Pg.108]

Table 2. Mg Isotopic Composition of Mg-poor Minerals from Allende (continued) Sample 25Mg/2 Mg 26Mg/2ltMg 26Mg (% ) 27Al/21tMg... [Pg.116]

Equation 19.13 is useful because it allows us to use the system s total isotopic composition, 818 Ox, to determine the compositions of the solvent and each species and mineral. The calculation proceeds in two steps. First, given <5180t and the fractionation factors aj-w and otp -w f°r the various species and minerals, we compute the composition of the solvent, applying Equation 19.13. Second, we use this result to calculate the composition of each species and mineral directly, according to Equations 19.10 and 19.11. [Pg.274]

The calculation begins with an initial fluid of specified isotopic composition. The model, by mass balance, assigns the initial compositions of the solvent and each aqueous species. The model then sets the composition of each unsegregated mineral to be in equilibrium with the fluid. The modeler specifies the composition of each segregated mineral as well as that of each reactant to be added to the system. [Pg.275]

The model traces the reaction path by taking a series of steps along reaction progress, moving forward each step from i to 2- Over a step, the system s isotopic composition can change in two ways reactants can be added or removed, and segregated minerals can dissolve. [Pg.275]

Once we have computed the total isotopic compositions, we calculate the compositions of the reference species using the mass balance equations (Eqns. 19.13, 19.20, 19.21, 19.22). We can then use the isotopic compositions of the reference species to calculate the compositions of the other species (Eqns. 19.10, 19.14, 19.15, 19.16) and the unsegregated minerals (Eqns. 19.11,19.17,19.18, 19.19). [Pg.277]

Fig. 19.2. Isotopic composition (bold lines) of dolomite formed by reaction between a limestone and migrating groundwater, assuming that minerals maintain isotopic equilibrium over the simulation. Fine lines show results of simulation holding minerals segregated from isotopic exchange, as already presented (Fig. 19.1). Fig. 19.2. Isotopic composition (bold lines) of dolomite formed by reaction between a limestone and migrating groundwater, assuming that minerals maintain isotopic equilibrium over the simulation. Fine lines show results of simulation holding minerals segregated from isotopic exchange, as already presented (Fig. 19.1).
Since we have no direct information about the chemistry of the Fountain fluid, we assume that its composition reflects reaction with minerals in the evaporite strata that lie beneath the Lyons. We take this fluid to be a three molal NaCl solution that has equilibrated with dolomite, anhydrite, magnesite (MgCC>3), and quartz. The choice of NaCl concentration reflects the upper correlation limit of the B-dot (modified Debye-Hiickel) equations (see Chapter 8). To set pH, we assume a CO2 fugacity of 50, which we will show leads to a reasonable interpretation of the isotopic composition of the dolomite cement. [Pg.380]

Fig. 25.4. Oxygen and carbon stable isotopic compositions of calcite ( ) and dolomite ( ) cements from Lyons sandstone (Levandowski et al., 1973), and isotopic trends (bold arrows) predicted for dolomite cements produced by the mixing reaction shown in Figure 25.3, assuming differing CO2 fugacities (25, 50, and 100) for the Fountain brine. Fine arrows, for comparison, show isotopic trends predicted in calculations which assume (improperly) that fluid and minerals maintain isotopic equilibrium over the course of the simulation. Figure after Lee and Bethke (1996). Fig. 25.4. Oxygen and carbon stable isotopic compositions of calcite ( ) and dolomite ( ) cements from Lyons sandstone (Levandowski et al., 1973), and isotopic trends (bold arrows) predicted for dolomite cements produced by the mixing reaction shown in Figure 25.3, assuming differing CO2 fugacities (25, 50, and 100) for the Fountain brine. Fine arrows, for comparison, show isotopic trends predicted in calculations which assume (improperly) that fluid and minerals maintain isotopic equilibrium over the course of the simulation. Figure after Lee and Bethke (1996).

See other pages where Minerals isotopic composition is mentioned: [Pg.160]    [Pg.927]    [Pg.227]    [Pg.229]    [Pg.230]    [Pg.160]    [Pg.927]    [Pg.227]    [Pg.229]    [Pg.230]    [Pg.368]    [Pg.71]    [Pg.52]    [Pg.263]    [Pg.19]    [Pg.345]    [Pg.345]    [Pg.641]    [Pg.159]    [Pg.241]    [Pg.101]    [Pg.272]    [Pg.276]    [Pg.277]    [Pg.279]    [Pg.281]    [Pg.282]    [Pg.379]   


SEARCH



Isotopic composition

Minerals composition

© 2024 chempedia.info