Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microtiter plate system

In addition to the automated devices and processing units that were developed primarily to automate chemistry and immunoassay that are described above, a variety of other instruments and processes have been automiated and used in the clinical laboratory. They include urine analyzers, flow cytometers, hematology cell counters, nucleic add analyzers, microtiter plate systems, point-of-care analyzers, and remotely located systems. [Pg.292]

The microtiter plate system is ideally used in conjunction with multichannel microtiter pipets. Essentially they allow the delivery of reagents via 4, 8, or 12 channels and are of fixed or variable volumes of 25"C250 pL. [Pg.61]

Avdeef and Bucher [24] investigated the use of universal buffers in potentiomet-ric titrations. Recently, such a buffer system, formulated with several of the Good components, has been designed specifically for robotic applications, where automated pH control in 96-well microtiter plates is required, with minimal interference to the UV measurement [48]. This universal buffer has a nearly perfectly linear pH response to additions of standard titrant in the pH 3-10 region [8, 48]. [Pg.62]

An additional requirement not noted in Table 1 is compliance with GLP7 These practices establish a paper trail for all procedures involved in the determination of residues. With regard to immunoassays, GLPs require calibration of measurement devices such as adjustable pipettors and dedicated spectrophotometers. Computer software output, as noted above, must be verified prior to use. This process can be simplified by limiting the application of specialized software to the operation of an instrument and carrying out the residue calculations in a broadly available spreadsheet such as Excel. On a positive note, in recent years, the software accompanying most microtiter plate readers has become generally easier to use and usually incorporates internal spreadsheets that are compatible with external systems. [Pg.723]

In the commercial version of the PAMPA assay, a sandwich (Fig. 7.9) is formed from a specially-designed 96-well microtiter plate [pION] and a 96-well microfilter plate [several sources], such that each composite well is divided into two chambers donor at the bottom and acceptor at the top, separated by a 125-pm-thick microfilter disk (0.45 pm pores, 70% porosity, 0.3 cm2 cross-sectional area), coated with a 10% wt/vol dodecane solution of egg lecithin (a mixed lipid containing mainly PC, PE, a slight amount of PI, and cholesterol), under conditions that multilamellar bilayers are expected to form inside the filter channels when the system contacts an aqueous buffer solution [543]. [Pg.128]

It is well known that acrylates undergo transition metal catalyzed reductive aldol reaction, the silanes R3SiH first reacting in a 1,4 manner and the enolsilanes then participating in the actual aldol addition.57,58 A catalytic diastereoselective version was discovered by arrayed catalyst evaluation in which 192 independent catalytic systems were screened on 96-well microtiter plates.59 Conventional GC was used as the assay. A Rh-DuPhos catalyst turned out to be highly diastereoselective, but enantioselectivity was poor.59... [Pg.518]

In a different approach a super-high-throughput ee-assay was developed on the basis of chirally modified capillary array electrophoresis (CAE).90 CAE was used in the Human Genome Project, and commercially available instruments have been developed which comprise a high number of capillaries in parallel, for example the 96-capillary unit MegaBACE consisting of 6 bundles of 16 capillaries.91 The system can address a 96-well microtiter plate. It was adapted to perform ee-determinations of chiral amines, which are potentially accessible by catalytic reductive amination of ketones, transition metal catalyzed Markovnikov addition of ammonia, or enzymatic hydrolysis of acetamides (Scheme 14).90... [Pg.529]

CombiCHEM System (Fig. 3.9) For small-scale combinatorial chemistry applications, this barrel-type rotor is available. It can hold two 24- to 96-well microtiter plates utilizing glass vials (0.5-4 mL) at up to 4 bar at 150 °C. The plates are made of Weflon (graphite-doped Teflon) to ensure uniform heating and are sealed by an inert membrane sheet. Axial rotation of the rotor tumbles the microwell plates to admix the individual samples. Temperature measurement is achieved by means of a fiber-optic probe immersed in the center of the rotor. [Pg.39]

The group of Grieco has presented a method for efficiently performing macrocy-clizations on a solid phase (Scheme 7.31) [48]. The preparation of the macrocyclic peptides required several standard transformations, which are not described in detail herein. The final intramolecular nucleophilic aromatic substitution step was carried out under microwave irradiation at 50 °C in a dedicated CombiCHEM system (see Fig. 3.9) utilizing microtiter plates in a multimode batch reactor. The cycli-zation product was obtained in good yield after a reaction time of 10 min and sub-... [Pg.316]

Figure 6.7 depicts an autosampler employed in a jtPLC system. Figure 6.8 details the autosampler component. Samples are transferred from the desired well in the microtiter plate into the columns of the Brio cartridge. If a 384-well plate is employed, the autosampler will carry out 3 sets of 8 injections into the columns, for a total of 24 columns. The solvent (mobile phase) does not circulate in the cartridge but is diverted into a backpressure regulator located in the waste line (Figure 6.2). This process of injection is known as stop-flow injection. After all samples are placed into the injection pits of the 24 columns in the cartridge (Figure 6.5), a clamp containing a seal... Figure 6.7 depicts an autosampler employed in a jtPLC system. Figure 6.8 details the autosampler component. Samples are transferred from the desired well in the microtiter plate into the columns of the Brio cartridge. If a 384-well plate is employed, the autosampler will carry out 3 sets of 8 injections into the columns, for a total of 24 columns. The solvent (mobile phase) does not circulate in the cartridge but is diverted into a backpressure regulator located in the waste line (Figure 6.2). This process of injection is known as stop-flow injection. After all samples are placed into the injection pits of the 24 columns in the cartridge (Figure 6.5), a clamp containing a seal...

See other pages where Microtiter plate system is mentioned: [Pg.9]    [Pg.698]    [Pg.294]    [Pg.294]    [Pg.189]    [Pg.9]    [Pg.698]    [Pg.294]    [Pg.294]    [Pg.189]    [Pg.26]    [Pg.267]    [Pg.183]    [Pg.419]    [Pg.625]    [Pg.652]    [Pg.67]    [Pg.68]    [Pg.59]    [Pg.101]    [Pg.205]    [Pg.208]    [Pg.65]    [Pg.95]    [Pg.221]    [Pg.47]    [Pg.49]    [Pg.514]    [Pg.527]    [Pg.284]    [Pg.233]    [Pg.224]    [Pg.475]    [Pg.478]    [Pg.484]    [Pg.94]    [Pg.162]   
See also in sourсe #XX -- [ Pg.294 ]




SEARCH



Microtiter plates

Plate Systems

© 2024 chempedia.info