Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microscopic nonlinear optical

Figure 1. The optical scattering leading to a single microscopic nonlinear optical event. Figure 1. The optical scattering leading to a single microscopic nonlinear optical event.
Flaving now developed some of the basic notions for the macroscopic theory of nonlinear optics, we would like to discuss how the microscopic treatment of the nonlinear response of a material is handled. Wliile the classical nonlinear... [Pg.1274]

Further subclassification of nonlinear optical materials can be explained by the foUowiag two equations of microscopic, ie, atomic or molecular, polarization,, and macroscopic polarization, P, as power series ia the appHed electric field, E (disregarding quadmpolar terms which are unimportant for device appHcations) ... [Pg.134]

Small probed regions down to 1-2 pm are possible using microscope lenses. Lasers can supply as much pump power as needed to compensate for weaker signals, but a limit is reached when sample heating or nonlinear optically induced processes become significant. [Pg.381]

The n-electron excitations are viewed as occuring on molecular sites weakly coupled to their neigbors and providing sources of nonlinear optical response through the on-site microscopic second order nonlinear electronic susceptibility... [Pg.4]

In summary, we have briefly reviewed current research highlights from studies of second order nonlinear optical responses in organic and polymeric media. We have stressed how fundamental studies have led to microscopic understanding of important electronic states that comprise the origin of the large second order nonlinear responses in these... [Pg.22]

Over the past decade it has been learned that organic materials containing appropriately constituted or substituted conjugation systems may exhibit highly enhanced electronic nonlinear optical polarization responses Since the microscopic second-order... [Pg.27]

However, its was found possible to infer all four microscopic tensor coefficients from macroscopic crystalline values and this impossibility could be related to the molecular unit anisotropy. It can be shown that the molecular unit anisotropy imposes structural relations between coefficients of macroscopic nonlinearities, in addition to the usual relations resulting from crystal symmetry. Such additional relations appear for crystal point group 2,ra and 3. For the monoclinic point group 2, this relation has been tested in the case of MAP crystals, and excellent agreement has been found, triten taking into account crystal structure data (24), and nonlinear optical measurements on single crystal (19). This approach has been extended to the electrooptic tensor (4) and should lead to similar relations, trtten the electrooptic effect is primarily of electronic origin. [Pg.89]

A specific set of experiments which must be mentioned, being directly associated with the main topic of this paper, is the work of Bergman, et. al. (22) dealing with the second-order nonlinear optical properties of polyvinylidene fluoride (PVF2). Nonvanishing the second-order nonlinear electric dipole susceptibility, is expected in PVF2 since it exhibits other properties requiring noncentrosymmetric microscopic structure. These properties appear... [Pg.111]

The systems discussed up to now all showed chiral susceptibilities that were of the same order of magnitude or smaller than the achiral susceptibility components. The system that we discuss in this section has chiral susceptibilities that dominate the nonlinear optical response.53 The material is a chiral helicenebisquinone derivative shown in Figure 9.22. In bulk samples, the nonracemic, but not the racemic, form of the material spontaneously organizes into long fibers clearly visible under an optical microscope. These fibers comprise columnar stacks of helicene molecules.54,55 Similar columnar stacks self-assemble in appropriate solvents, such as n-dodecane, when the concentration exceeds 1 mM. This association can be observed by a large increase in the circular dichroism (CD) of the solutions. [Pg.559]

Nonlinear light-matter interactions have been successfully applied to create new visualization contrast mechanisms for optical microscopy. Nonlinear optical microscopy employs femtosecond and picosecond lasers to achieve a high photon flux density by focusing the beam onto a sample with a high numerical aperture (NA) microscope... [Pg.71]

HeUwart, R., and Christen, P. 1974. Nonlinear optical microscopic examination of structure in polycrystalline ZnSe. Opf. Comm. 12 318-22. [Pg.99]

One of the most common trends in the recent development of nonlinear optical spectroscopies for biological imaging is the multimodal approach, which incorporates several spectroscopic techniques in one instrument. This approach allows the employment of several contrast mechanisms, such as fluorescence, second harmonic, and third harmonic (Cisek et al., Chapter 4), significantly increasing the informational content of microscopic imaging. [Pg.294]

Finally, the combination of dendrimers and organometallic entities as fundamental building blocks affords an opportunity to construct an infinite variety of organometallic starburst polymeric superstructures of nanoscopic, microscopic, and even macroscopic dimensions. These may represent a promising class of organometallic materials due to their specific properties, and potential applications as magnetic ceramic precursors, nonlinear optical materials, and liquid crystal devices in nanoscale technology. [Pg.192]

Here we present the latest results from our group focused on the design of tailored femtosecond pulses to achieve control of nonlinear optical excitation in large molecules based on the concept of multiphoton intrapulse interference (Mil) [1-4]. Our goal is to elucidate well-defined and reproducible pulse shapes that can be used to enhance or suppress particular nonlinear optical transitions in large molecules such as laser dyes and proteins in solution. We demonstrate the use of Mil to probe the local and microscopic environment of molecules by selective two-photon laser induced fluorescence (LIF). [Pg.95]

In this paper, an overview of the origin of second-order nonlinear optical processes in molecular and thin film materials is presented. The tutorial begins with a discussion of the basic physical description of second-order nonlinear optical processes. Simple models are used to describe molecular responses and propagation characteristics of polarization and field components. A brief discussion of quantum mechanical approaches is followed by a discussion of the 2-level model and some structure property relationships are illustrated. The relationships between microscopic and macroscopic nonlinearities in crystals, polymers, and molecular assemblies are discussed. Finally, several of the more common experimental methods for determining nonlinear optical coefficients are reviewed. [Pg.37]

The tutorial begins with a description of the basic concepts of nonlinear optics and presents illustrations from simple models to account for the origin of the effects. The microscopic or molecular origin of these effects is then discussed in more detail. Following this, the relationship between molecular responses and the effects observed in bulk materials are presented and finally some of the experimental methods used to characterize these effects are described. [Pg.38]

In the above equation a is the linear polarizability. The terms 3 and Y, called first and second hyperpolarizabilities, describe the2 nonlinear optical interactions and are microscopic analogues of x and x... [Pg.58]

In the weak coupling limit, as is the case for most molecular systems, each molecule can be treated as an independent source of nonrlinear optical effects. Then the macroscopic susceptibilities X are derived from the microscopic nonlinearities 3 and Y by simple orientationally-averaged site sums using appropriate local field correction factors which relate the applied field to the local field at the molecular site. Therefore (1,3)... [Pg.58]

In Equation 6, n (a>.) is the intensity independent refractive index at frequency u).,.0 Tlie sum in Equation 5 is over all the sites (n) the bracket, < >, represents an orientational averaging over angles 0 and . Unlike for the second-order effect, this orientational average for the third-order coefficient is nonzero even for an isotropic medium because it is a fourth rank tensor. Therefore, the first step to enhance third order optical nonlinearities in organic bulk systems is to use molecular structures with large Y. For this reason, a sound theoretical understanding of microscopic nonlinearities is of paramount importance. [Pg.59]

Another chemical approach to improve our microscopic understanding of optical nonlinearities is a study of nonlinear optical behavior of sequentially built and systematically derivatized structures. Most past work for third-order nonlinearities have focused on conjugated polymers. This ad hoc approach is not helpful in identifying functionalities necessary to enhance optical nonlinearities. A systematic study and correlation of Y values of systematically varied structure is an important approach for material development. [Pg.69]


See other pages where Microscopic nonlinear optical is mentioned: [Pg.887]    [Pg.1299]    [Pg.156]    [Pg.77]    [Pg.1]    [Pg.13]    [Pg.51]    [Pg.89]    [Pg.110]    [Pg.113]    [Pg.138]    [Pg.143]    [Pg.35]    [Pg.52]    [Pg.72]    [Pg.72]    [Pg.80]    [Pg.82]    [Pg.83]    [Pg.135]    [Pg.140]    [Pg.240]    [Pg.241]    [Pg.57]    [Pg.57]    [Pg.64]    [Pg.67]    [Pg.205]    [Pg.368]   


SEARCH



Microscopic nonlinearities

Microscopic properties, nonlinear optics

Microscopic, second-order optical nonlinearities

Optical microscope

Optical microscopic

The Problem of Translating Microscopic to Macroscopic Optical Nonlinearity

© 2024 chempedia.info